ПРИЛОЖЕНИЕ А

ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ «Современное производство отливок из сплавов черных и цветных металлов»

1. Перечень оценочных средств для компетенций, формируемых в результате освоения дисциплины

Код контролируемой компетенции	Способ оценивания	Оценочное средство
ПК-1: Способен управлять технологическим обеспечением и контролем качества работ при изготовлении отливок на машиностроительном предприятии	Зачет	Комплект контролирующих материалов для зачета
ПК-4: Способен разрабатывать нормы выработки и технологические нормативы на расход материалов, заготовок, топлива и электроэнергии в машиностроении	Зачет	Комплект контролирующих материалов для зачета

2. Описание показателей и критериев оценивания компетенций, описание шкал оценивания

Оцениваемые компетенции представлены в разделе «Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций» рабочей программы дисциплины «Современное производство отливок из сплавов черных и цветных металлов».

При оценивании сформированности компетенций по дисциплине «Современное производство отливок из сплавов черных и цветных металлов» используется 100-балльная шкала.

Критерий	Оценка по 100-	Оценка по
	балльной шкале	традиционной шкале
Студент освоил изучаемый материал,	25-100	Зачтено
выполняет задания в соответствии с		
индикаторами достижения		
компетенций, может допускать		
отдельные ошибки.		
Студент не освоил основное	0-24	Не зачтено
содержание изученного материала,		
задания в соответствии с		
индикаторами достижения компетенций		
не выполнены или выполнены неверно.		

3. Типовые контрольные задания или иные материалы, необходимые для оценки уровня достижения компетенций в соответствии с индикаторами

1.Примеры контрольных заданий

Компетенция	Индикатор достижения компетенции	
ПК-1 Способен управлять технологическим	ПК-1.1 Анализирует технологию получения	

обеспечением и контролем качества работ при изготовлении отливок на машиностроительном		
предприятии		
ПК-4 Способен разрабатывать нормы выработки и	ПК-4.2 Разрабатывает технологические	
технологические нормативы на расход	нормативы на расход материалов, топлива и	
материалов, заготовок, топлива и	электроэнергии на предприятии по выпуску	
электроэнергии в машиностроении	литых заготовок	

1. Для разработки технологических нормативов выполнить методом подбора расчет шихты серого чугуна при выплавке в коксовой вагранке для обеспечения в отливках следующего химического состава: углерод — 3,4%, кремний — 1,9 %, марганец — 0,8% (ПК-4.2).

Химический состав исходных шихтовых материалов и угар элементов приведены в приложении (таблицы 1,2) (ПК-1.1).

- 2. Провести анализ и описать формирование структуры ферритного ковкого чугуна в отливках в процессе отжига белого чугуна (Приложение, рис. 1) (ПК-1.1).
- 3. Описать технологический процесс получения чугуна с шаровидным графитом марки ВЧ50 (ГОСТ7293-85) при выплавке расплава в индукционной тигельной печи и использовании комплексного магнийсодержащего модификатора ФСМг7 (Приложение, таблица 3) и провести анализ микроструктуры чугуна марки ВЧ50 в отливках (ПК-1.1).
- 4. Описать технологический процесс получения чугуна с шаровидным графитом марки ВЧ60 (ГОСТ7293-85) при выплавке расплава в индукционной тигельной печи и использовании для процесса модифицирования автоклава (Приложение, рис. 2) и провести анализ микроструктуры чугуна марки ВЧ60 в отливках (ПК-1.1).
- 5. Описать технологический процесс рафинирования и модифицирования алюминиевого сплава марки АК9ч (ГОСТ 1583-93) и провести анализ микроструктуры сплава АК9ч в отливках (ПК-1.1).
- 6. Описать технологический процесс термообработки отливок из легированной стали марки 40ХЛ (ГОСТ 977-88) с проведением анализа конечной микроструктуры и механических свойств стали 40ХЛ в отливках (ПК-1.1).
- 7. Для разработки технологических нормативов выполнить расчет потребления электроэнергии при выплавке чугуна для получения 5,0 тонн годных отливок в индукционной печи с емкостью тигля 400 кг. Коэффициент выхода годного − 75%. Удельный расход электроэнергии на плавление и перегрев до 1400 °C − 550 кВт·ч/т (ПК-4.2).

Приложение

Таблица 1 – Состав шихты, применяемой при плавке в коксовой вагранке, %

Наименование шихтовых материалов, ГОСТ или ТУ	Отливки из чугуна марок до СЧ20 с равномерной толщиной стенок	Отливки из чугуна марок СЧ20 и выше с разными толщинами стенок, отливки из КЧ и ВЧШГ
Чугун литейный коксовый чушковый, ГОСТ 4832 – 95	30 – 40	30 – 40
Возврат собственного производства	20 – 40	20 – 40
Лом чугунный ГОСТ 2787-75 Лом стальной	10 – 30	10 – 30
кусковой или пакетированный ГОСТ 2787-75	0 – 20	15 – 40
Ферросилиций ФС25, ГОСТ 1415 – 92	0-3	0-2
Ферромарганец доменный ФМн78, ГОСТ 4755 – 91	0 - 1	0-1

Таблица 2 — Угар химических элементов при плавке в коксовой вагранке, %

Наименование	Угар химических элементов	
Углерод	+10	
Кремний	-10	
Марганец	-20	

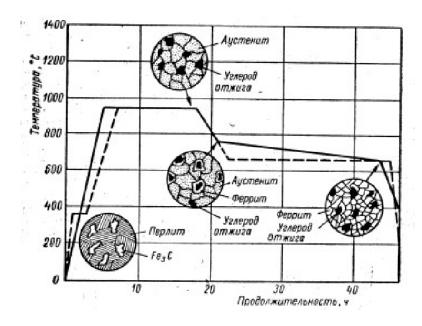


Рис. 1– Типовой режим отжига отливок из ферритного ковкого чугуна

Таблица 3 – Комплексные магнийсодержащие модификаторы

		Массовая доля элементов, %				
Марка кремния (Si)	кпемния (Si)	магния (Mg)	кальция (Са)	P3M	алюминия (AI)	железа (Fe)
	Apolinini (O)	wannin (wg) kanoqin (oa)	1 3m	не более	7K071004 (1 C)	
ФСМг4	45,0 - 65,0	3,5 - 4,5	0,2 - 1,0	1,0 - 2,0	2,5	ост.
ФСМг5	45,0 - 55,0	4,5 - 6,5	0,2 - 1,0	0,3 - 1,0	1,2	ост.
ФСМг7	45,0 - 55,0	6,5 - 8,5	0,2 - 1,0	0,3 - 1,0	1,0	ост.
ФСМг6К2Р6	43,0 - 52,0	6,0 - 7,0	2,0 - 3,0	до 5,0	1,5	ост.
ФСМг7La	45,0 - 55,0	6,0 - 6,8	0,4 - 0,8	0,5 - 0,65 La	1,2	ост.

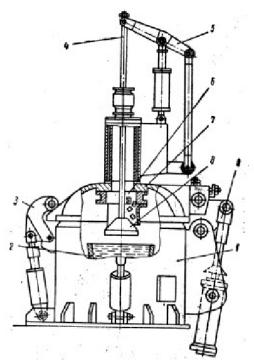


Рис. 2 – Камера-автоклав для введения магния в расплав чугуна

- 1 корпус; 2 ковш с жидким чугуном; 3 механизм запирания камеры; 4 шток;
- 5 механизм перемешивания; 6 полость для магия; 7 крышка; 8 мешалка;
- 9 механизм открывания крышки

4. Файл и/или БТЗ с полным комплектом оценочных материалов прилагается.