Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Директор ИнБиоХим Ю.С. Лазуткина

Рабочая программа дисциплины

Код и наименование дисциплины: **Б1.Б.4** «Моделирование технологических и природных систем»

Код и наименование направления подготовки (специальности): 18.04.02 Энергои ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии

Направленность (профиль, специализация): Охрана окружающей среды и рациональное использование природных ресурсов

Статус дисциплины: обязательная часть (базовая)

Форма обучения: очная

Статус	Должность	И.О. Фамилия
Разработал	доцент	И.Г. Чигаев
	Зав. кафедрой «ХТиИЭ»	В.А. Сомин
Согласовал	руководитель направленности (профиля) программы	В.А. Сомин

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной

программы

Код		В результате изучения дисциплины обучающиеся должны:			
компетенции из УП и этап её формирования	Содержание компетенции	знать	уметь	владеть	
OK-3	готовностью к саморазвитию, самореализации, использованию творческого потенциала	содержание процесса формирования целей профессионального и личностного развития, подходы при использовании творческого потенциала	выделять и характеризовать проблемы собственного развития, формулировать и реализовывать цели профессионального и личностного развития и самореализации, оценивать свои творческие возможности	приемами и технологиями формирования целей саморазвития и их самокритической оценки; самооценки результатов деятельности по решению профессиональных задач и использованию творческого потенциала	
ОПК-4	готовностью к использованию методов математического моделирования материалов и технологических процессов, к теоретическому анализу и экспериментальной проверке теоретических гипотез	методы математического моделирования технологических процессов	использовать в практической деятельности методы математического моделирования технологических процессов	навыками математического моделирования технологических процессов	
ПК-6	готовностью разрабатывать математические модели и осуществлять их экспериментальную проверку	основные принципы построение математических моделей технологических и природных сред	использовать математические модели при моделировании технологических и природных сред	навыками построения математических моделей при моделировании технологических и природных сред	

2. Место дисциплины в структуре образовательной программы

Дисциплины (практики), предшествующие изучению	Дополнительные главы процессов и аппаратов защиты окружающей среды, Организация научных	
дисциплины, результаты освоения которых необходимы	исследований, Технологии защиты литосферы, Управление научными проектами	
для освоения данной		
дисциплины.		
Дисциплины (практики), для	Механизмы регулирования в сфере	
которых результаты освоения	природопользования и охраны окружающей среды,	
данной дисциплины будут	Научно-исследовательская работа, Научно-исследовательская работа (получение первичных	
необходимы, как входные	навыков научно-исследовательской работы),	
знания, умения и владения для	Организация энерго- и ресурсосберегающих	

их изучения.	производств, Преддипломная практика	

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 5 / 180 Форма промежуточной аттестации: Экзамен

	Виды занятий, их трудоемкость (час.)				Объем контактной
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
очная	16	32	0	132	62

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: очная

Семестр: 1

Лекционные занятия (16ч.)

- 1. Основные понятия метода моделирования {лекция с разбором конкретных ситуаций} (3ч.)[4,6] 1.Виды моделей. 2.Описание объектов моделирования. 3.Достоинства и недостатки различных спо-собов моделирования. 4.Экономичность 5.Традуктивность 6.Детерменированные процессы 7.Стохастические процессы 8.Физико-химическая система. 9.Малая и большая системы.
- **2.** Способы моделирования. Эмпирические модели {лекция с разбором конкретных ситуаций} (2ч.)[1,2,4,5,6] Способы моделирования 1.Этапы математического моделирования. 2.Структура математического описания при структурном подходе. 3.Иерархическая структура математической модели. 4.Теория подобия. 5.Аналогия. 6.Аналоговые вычислительные машины. Эмпирические модели 1.Функция отклика системы. 2.Полиномиальные формулы.
- **3.** Системный анализ. Особенности моделей и задач математического моделирования {лекция с разбором конкретных ситуаций} (2ч.)[4,5,6] Системный анализ 1.Стратегия системного анализа. 2.Возможности системного анализа. 3.Иерархия химико- технологических процессов. 4.Внешние связи

системы. Особенности моделей и задач математического моделирования 1.Точность моделей. 2.Параметричность моделей. 3.Лимитирующие стадии.

- **4. Конечные и дифференциальные уравнения. Передача сигналов в системах** {лекция с разбором конкретных ситуаций} (2ч.)[2,4,5,6] Конечные и дифференциальные уравнения 1.Дифферинциальные уравнения. 2.Задачи Коши. 3.Прямые и обратные задачи. 4.Проектные и проверочные расчеты. Передача сигналов в системах 1.Характеристика сигналов. 2.Типовые звенья системы. 3.Обратная связь. 4.Принцип черного ящика.
- 5. Типовые математические модели структуры потоков в аппаратах {лекция ситуаций} (2ч.)[2,4,5,6] разбором конкретных 1.Модель идеального вытеснения. 2. Модель идеального смешения. 3. Диффузионная модель. 5. Ячеечная 4. Двухпараметрическая диффузионная модель. модель. 6. Комбинированные модели.
- 6. Адекватность моделей структуры потоков. Способы обработки экспериментальных данных {лекция с разбором конкретных ситуаций} (3ч.)[1,4,5,6] Адекватность моделей структуры потоков 1.Способ установления адекватности. 2.Функции интенсивности. 3.Пример определения адекватности модели. Способы обработки экспериментальных данных 1.Метод наименьших квадратов. 2.Линеймая форма. 3.Нелинейная форма.
- **7.** Полный факторный эксперимент {лекция с разбором конкретных ситуаций} (2ч.)[1,6] 1.Факторное пространство. 2.Методы преобразования факторного пространства. 3.Составление матрицы планирования.

Лабораторные работы (32ч.)

- 1. Составление алгоритмов решения инженерных задач по тепловым процессам(4ч.)[2,3,5,6]
- 2. Решение дифференциальных уравнений методом Эйлера с применением ЭВМ(4ч.)[2,4]
- 3. Составление блок схем для программирования химико-технологических процессов. Получение навыков программирования на ЭВМ(4ч.)[3,6]
- 4. Решение систем линейных дифференциальных уравнений с применением ЭВМ(5ч.)[4,5,6]
- 5. Получение математической модели технологического процесса методом Полного факторного эксперимента(5ч.)[1,6]
- 6. Идентификация XTC. Идентификация, выбор факторов, построение ППГ, МПГО, МПГК, ТПГ, XTC различного типа(5ч.)[4,5,6]
- 7. Моделирование тепловых процессов(5ч.)[1,2,4]

Самостоятельная работа (132ч.)

1. Самостоятельное изучение теоретического материала(80ч.)[4,6] Основные понятия метода моделирования. Системный анализ. Особенности моделей и задач математического моделирования. Способы моделирования. Эмпирические

модели. Конечные и дифференциальные уравнения. Передача сигналов в системах. Типовые математические модели структуры потоков в аппаратах. Адекватность моделей структуры потоков. Способы обработки экспериментальных данных. Полный факторный эксперимент.

- 2. Подготовка к экзамену(36ч.)[4,5,6]
- 3. Подготовка к контрольным работам(16ч.)[1,2,4,5,6]

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам: Лань, Университетская библиотека он-лайн, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

- 1. Лебедев И.А. Полный факторный эксперимент. Методические указания. / И.А. Лебедев, Барнаул: АлтГТУ.2015. Режим доступа: http://elib.altstu.ru/eum/104636
- 2. Лебедев И. А. Применение математического моделирования для расчета теплообменной аппаратуры и оптимизации режимов ее работы. Методические указания к лабораторной работе по курсу «Численные методы решения инженерных задач и математическое моделирование»./ И. А. Лебедев, Н. Г. Андреева, Е. В. Кондратюк Алт. государственный технический университет им. И.И.Ползунова. Барнаул: Б.и., 2010 20 с. URL: http://elib.altstu.ru/eum/943
- 3. Бельдеева Л.Н., Чигаев И.Г. Автоматическое программное управление. АлтГТУ им. И. И. Ползунова. Барнаул, Изд-во АлтГТУ, 2019. 19 с. . Режим доступа: http://elib.altstu.ru/eum/107457

6. Перечень учебной литературы

- 6.1. Основная литература
- 4. Родионов, Ю.В. Основы математического моделирования: учебное электронное издание Ю.В. Родионов, А.Д. Нахман Тамбовский государственный технический университет. _ Тамбов Тамбовский государственный технический университет (ТГТУ), 2018. – 111 с. : табл., граф. – подписке. Режим доступа: ПО https://biblioclub.ru/index.php?page=book&id=570456 (дата обращения: 10.12.2020). - Библиогр. в кн. - ISBN 978-5-8265-1886-1. - Текст: электронный.
- 5. Авдюнин, Е.Г. Моделирование и оптимизация промышленных теплоэнергетических установок : учебник : [16+] / Е.Г. Авдюнин. Москва ; Вологда : Инфра-Инженерия, 2019. 185 с. : ил., табл., схем. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=564841 (дата обращения: 10.12.2020). Библиогр.: с. 182. ISBN 978-5-9729-0297-2. Текст : электронный.
 - 6. Голубева Н.В. Математическое моделирование систем и процессов.

Учебное пособие / Н.В.Голубева.- СПб: Лань, 2016 - 193 с. - Режим доступа: https://e.lanbook.com/reader/book/76825/#5

6.2. Дополнительная литература

7. Лебедев, С.В. Пространственное ГИС-моделирование геоэкологических объектов в ArcGIS: учебник: [16+] / С.В. Лебедев, Е.М. Нестеров; Российский государственный педагогический университет имени А. И. Герцена. — Санкт-Петербург: Российский государственный педагогический университет им. А.И. Герцена (РГПУ), 2018. — 280 с.: ил., табл. — Режим доступа: по подписке. — URL: https://biblioclub.ru/index.php?page=book&id=577800 (дата обращения: 10.12.2020). — Библиогр. в кн. — ISBN 978-5-8064-2486-1. — Текст: электронный.

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

8. https://yandex.ru/

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

Фонд оценочных материалов (ФОМ) по дисциплине представлен в приложении А.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационно-образовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение
1	Acrobat Reader
2	Mathcad 15
3	OpenOffice
4	Dev-C++
5	GIMP
6	LibreOffice
7	Windows
8	Антивирус Kaspersky

№пп	Используемые профессиональные базы данных и информационные	
	справочные системы	
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным	
	ресурсам" для студентов и преподавателей; каталог ссылок на образовательные	
	интернет-ресурсы (http://Window.edu.ru)	
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к	
	фондам российских библиотек. Содержит коллекции оцифрованных документов	
	(как открытого доступа, так и ограниченных авторским правом), а также каталог	
	изданий, хранящихся в библиотеках России. (http://нэб.pф/)	

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы		
учебные аудитории для проведения занятий лекционного типа		
учебные аудитории для проведения занятий семинарского типа		
учебные аудитории для проведения групповых и индивидуальных консультаций		
учебные аудитории для проведения текущего контроля и промежуточной аттестации		
помещения для самостоятельной работы		
лаборатории		

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».