Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ФСТ

С.В. Ананьин

Рабочая программа дисциплины

Код и наименование дисциплины: **Б1.Б.5** «Физика»

Код и наименование направления подготовки (специальности): 18.03.01

Химическая технология

Направленность (профиль, специализация): Технология химических

производств

Статус дисциплины: обязательная часть (базовая)

Форма обучения: очная

Статус	Должность	И.О. Фамилия
Разработал	доцент	К.И. Рогозин
	Зав. кафедрой «Ф»	С.Л. Кустов
Согласовал	руководитель направленности (профиля) программы	А.М. Маноха

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной

программы

Код		В результате изучения дисциплины обучающиеся должны:		
компетенции из УП и этап её формирования	Содержание компетенции	знать	уметь	владеть
ОПК-1	способностью и готовностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности	основные законы физики, методы математического анализа и моделирования, теоретического и экспериментального исследования.	применять законы физики, методы математического анализа и моделирования, теоретического и экспериментального исследования.	разрабатывать проектную техническую документацию, оформлять законченные научноисследовательские работы на основе законов физики.
ОПК-2	готовностью использовать знания о современной физической картине мира, пространственновременных закономерностях, строении вещества для понимания окружающего мира и явлений природы	роль физических законов в решении глобальных проблем человечества, системный подход в разработке современных технологий.	изучать специальную литературу и другую научнотехническую информацию, достижения отечественной и зарубежной науки и техники в области физики для описания окружающего мира и явлений природы.	современными методами оценки свойств сырья, полуфабрикатов и качества готовой продукции; отдельных элементов химикотехнологического процесса проведения анализов (испытаний) на соответствие продукции установленным требованиям.

2. Место дисциплины в структуре образовательной программы

Дисциплины (практики),	Математика
предшествующие изучению	
дисциплины, результаты	
освоения которых необходимы	
для освоения данной	
дисциплины.	
Дисциплины (практики), для	Материаловедение и технология конструкционных
которых результаты освоения	материалов, Техническая термодинамика и
данной дисциплины будут	теплотехника, Электротехника и электроника
необходимы, как входные	
знания, умения и владения для	
их изучения.	

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 10 / 360

	Виды занятий, их трудоемкость (час.)				Объем контактной
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
очная	68	51	51	190	194

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: очная

Семестр: 2

Объем дисциплины в семестре з.е. /час: 4 / 144

Форма промежуточной аттестации: Зачет

Виды занятий, их трудоемкость (час.)				Объем контактной работы
Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	обучающегося с преподавателем (час)
17	17	17	93	65

Лекционные занятия (17ч.)

1. Знакомство с основными законами физики, механики.(4ч.)[1,6,10] Введение: Физика в системе естественных наук. Общая структура и задачи дисциплины «Физика». Краткая история физических идей, концепций и открытий.

Понятие состояния в классической механике. Кинематика поступательного и вращательного движения. Динамика поступательного движения, уравнения движения.

- Основными понятия И законы механики. {лекция заранее запланированными ошибками} (44.)[1,6,10]Работа Мошность. силы. Кинетическая потенциальная энергия, ИХ свойства. Связь между И консервативной силой и потенциальной энергией. Закон сохранения энергии в диссипативной системах. Закон сохранения консервативной и импульса, абсолютно упругое и неупругое столкновение тел.
- **3.** Основными понятия и законы механики.(2ч.)[1,6,10] Динамика вращательного движения твердого тела. Момент инерции. Момент силы и момент импульса. Закон сохранения момента импульса.
- 4. Молекулярная физика(3ч.)[1,6,10] Статистический и термодинамический

подходы. Основное уравнение молекулярно-кинетической теории идеального газа. Уравнение состояния идеального газа. Распределение Максвелла и Больцмана.

5. Основы термодинамики(4ч.)[1,6,10] Три начала термодинамики, термодинамические функции состояния, фазовые равновесия и фазовые превращения. Обратимые и необратимые процессы. Циклические процессы. Коэффициент полезного действия тепловых машин.

Практические занятия (17ч.)

- 1. Планирование, подготовка и выполнение типовых экспериментальных исследований по заданной методике. Обработка результатов при выполнении экспериментальных измерений(2ч.)[1,10,13,14] Планирование и выполнение типовых экспериментальных исследований по заданной методике. Обработка результатов при проведении прямых и косвенных измерений
- **2. Кинематика(2ч.)[1,10,13,14]** Применение физико-математического аппарата к решению задач по теме "Кинематика поступательного и вращательного движения"
- **3.** Динамика поступательного движения(2ч.)[1,10,13,14] Динамика поступательного движения материальной точки
- **4.** Законы сохранения(2ч.)[1,10,13,14] Работа, мощность и энергия. Законы сохранения механической энергии и импульса
- **5.** Динамика вращательного движения твердого тела(2ч.)[1,10,13,14] Уравнение динамики вращательного движения. Закон сохранения момента импульса.
- **6. Контрольная работа № 1(2ч.)[1,6,10,13,14]** Контрольная работа № 1. Модуль "Механика".
- **7. Молекулярная физика(2ч.)[1,10,13,14]** Основы МКТ. Уравнение состояния идеального газа. Распределения Максвелла и Больцмана.
- **8. Термодинамика(2ч.)[1,10,13,14]** Три начала термодинамики. Энтропия. КПД тепловых машин.
- **9. Контрольная работа № 2(1ч.)[1,6,10,13,14]** Контрольная работа № 2. Модуль "Молекулярная физика и термодинамика".

Лабораторные работы (17ч.)

- 1. Лабораторная работа №1. Планирование, подготовка и выполнение типовых экспериментальных исследований по заданной методике. {работа в малых группах} (4ч.)[3,6,10] Изучение законов поступательного движения тел с помощью машины Атвуда. (Фронтальная работа)
- 2. Лабораторная работа №2. Планирование, подготовка и выполнение типовых экспериментальных исследований по заданной методике. {работа в малых группах} (4ч.)[3,6,10] Изучение законов вращательного движения с помощью маятника Обербека. (Фронтальная работа)

- 3. Лабораторная работа №3. Планирование, подготовка и выполнение типовых экспериментальных исследований по заданной методике. {работа в малых группах} (3ч.)[3,6,10] Проверка справедливости теоремы Гюйгенса-Штейнера с помощью физического маятника. (Фронтальная работа)
- **4.** Лабораторная работа №**4.** Планирование, подготовка и выполнение типовых экспериментальных исследований по заданной методике. {работа в малых группах} (3ч.)[3,6,10] Лабораторные работы №4,5 выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам.
- 5. Лабораторная работа №5. Планирование, подготовка и выполнение типовых экспериментальных исследований по заданной методике. {работа в малых группах} (3ч.)[3,6,10] Лабораторные работы №4,5 выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам.

Самостоятельная работа (93ч.)

- **1. Проработка теоретического материала.**(12ч.)[1,6,10,13,14] Работа с образовательными ресурсами
- **2.** Подготовка к практическим и лабораторным работам.(34ч.)[3,6,10] Работа с образовательными ресурсами.
- **3. Подготовка к контрольным работам.(6ч.)[1,6,10,13,14]** Работа с образовательными ресурсами.
- 4. Выполнение расчётного задания(31ч.)[1,6,10,13,14]
- **5.** Подготовка к зачету(10ч.)[1,6,10,13,14] Работа с образовательными ресурсами.

Семестр: 3

Объем дисциплины в семестре з.е. /час: 3 / 108 Форма промежуточной аттестации: Экзамен

Виды занятий, их трудоемкость (час.)			Объем контактной работы	
Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	обучающегося с преподавателем (час)
17	17	17	57	56

Лекционные занятия (17ч.)

- 1. понятия электростатики.(6ч.)[2,7,11] Основные законы Электростатическое поле и его характеристики. Принцип суперпозиции. Теорема Циркуляция Гаусса электростатического вакууме. вектора ДЛЯ поля В напряженности. Диэлектрики и проводники в электрическом поле. Теорема Гаусса для вектора электростатической индукции. Электрическая Конденсаторы. Энергия электрического поля.
- **2.** Основные понятия и законы электродинамики.(2ч.)[2,7,11] Постоянный электрический ток. Законы постоянного тока. Электродвижущая сила. Работа и мощность электрического тока. Закон Джоуля-Ленца. Правила Кирхгофа.
- 3. Основные понятия и законы электромагнетизма. Магнитостатика в

- вакууме. {лекция с разбором конкретных ситуаций} (4ч.)[2,7,11] Принцип суперпозиции магнитных полей. Закон Био-Савара-Лапласа. Сила Лоренца и сила Ампера. Теорема Гаусса для магнитного поля в вакууме. Циркуляция вектора магнитной индукции.
- **4.** Основные понятия и законы электромагнетизма. Магнитные свойства вещества.(2ч.)[2,7,11] Вектор намагниченности. Магнитная проницаемость. Диа-, пара- и ферромагнетики. Природа ферромагнетизма.
- **5.** Основные законы электромагнетизма. Электромагнитная индукция.(2ч.)[2,7,11] Явление электромагнитной индукции. Закон Фарадея. Правило Ленца. Индуктивность. Самоиндукция. Энергия и плотность энергии магнитного поля. Взаимная индукция. Трансформатор.
- **6. Основы теории Максвелла для электромагнитного поля(1ч.)[2,7,11]** Вихревое электрическое поле. Ток смещения. Система уравнений Максвелла в интегральной и дифференциальной форме.

Практические занятия (17ч.)

- 1. Электростатика в вакууме и веществе. Проведение теоретических исследований электростатических полей(6ч.)[2,11,13,14] Напряженность и потенциал электростатического поля. Принцип суперпозиции. Применение теоремы Гаусса к расчету электростатических полей в вакууме. Теорема Гаусса для вектора электростатической индукции. Условия на границе двух диэлектриков. Конденсаторы. Энергия электростатического поля.
- **2. Постоянный электрический ток(2ч.)[2,11,13,14]** Законы постоянного тока. Работа и мощность электрического тока. Закон Джоуля-Ленца. Правила Кирхгофа.
- **3. Контрольная работа № 1(2ч.)[2,7,11,13,14]** Контрольная работа № 1. Модуль "Электричество".
- **4.** Проведение теоретических исследований магнитных полей в вакууме(3ч.)[2,11,13,14] Принцип суперпозиции магнитных полей. Закон Био-Савара-Лапласа. Сила Лоренца и сила Ампера. Движение заряженных частиц в электрических и магнитных полях.
- **5.** Электромагнитная индукция(2ч.)[2,11,13,14] ЭДС индукции. Закон Фарадея. Правило Ленца. Самоиндукция. Энергия и плотность энергии магнитного поля.
- **6. Контрольная работа № 2(2ч.)[2,7,11,13,14]** Контрольная работа № 2. Модуль "Электромагнетизм".

Лабораторные работы (17ч.)

- 1. Лабораторная работа №1. Планирование, подготовка и выполнение типовых экспериментальных исследований по заданной методике. {работа в малых группах} (3ч.)[4,7,11] Изучение закона Ома. Определение удельного сопротивления проводника. (Фронтальная лабораторная работа)
- 2. Лабораторная работа №2. Планирование, подготовка и выполнение

типовых экспериментальных исследований по заданной методике. {работа в малых группах} (3ч.)[4,7,11] Лабораторные работы №2-6 выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам.

- 3. Лабораторная работа №3. Планирование, подготовка и выполнение типовых экспериментальных исследований по заданной методике. {работа в малых группах} (2ч.)[4,7,11] Лабораторные работы №2-6 выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам.
- **4.** Лабораторная работа №**4.** Планирование, подготовка и выполнение типовых экспериментальных исследований по заданной методике. {работа в малых группах} (3ч.)[4,7,11] Лабораторные работы №2-6 выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам.
- **5.** Лабораторная работа №**5.** Планирование, подготовка и выполнение типовых экспериментальных исследований по заданной методике. {работа в малых группах} (3ч.)[4,7,11] Лабораторные работы №2-6 выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам.
- **6.** Лабораторная работа №6. Планирование, подготовка и выполнение типовых экспериментальных исследований по заданной методике. {работа в малых группах} (3ч.)[4,7,11] Лабораторные работы №2-6 выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам.

Самостоятельная работа (57ч.)

- **1.** Проработка теоретического материала.(6ч.)[2,7,11,13,14] Работа образовательными ресурсами.
- 2. Подготовка к практическим и лабораторным работам.(10ч.)[2,4,7,11] Работа с образовательными ресурсами.
- **3.** Подготовка к контрольным работам(6ч.)[2,7,11,13,14] Работа образовательными ресурсами.
- 4. Выполнение индивидуального домашнего задания (ИДЗ).(8ч.)[2,7,11,13] Работа с образовательными ресурсами.
- **5. Подготовка к экзамену(27ч.)[2,7,11,13,14]** Работа с образовательными ресурсами

Семестр: 4

Объем дисциплины в семестре з.е. /час: 3 / 108

Форма промежуточной аттестации: Зачет

Виды занятий, их трудоемкость (час.)			Объем контактной работы	
Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	обучающегося с преподавателем (час)
34	17	17	40	74

Лекционные занятия (34ч.)

1. Основные понятия и законы физики колебаний и волн.(8ч.)[8,11] Свободные, затухающие и вынужденные колебания. Переменный электрический

- ток. Сложение колебаний. Метод векторных диаграмм. Волновое движение. Плоские и сферические волны. Волновое уравнение. Электромагнитные волны. Энергия и импульс электромагнитного поля. Вектор Пойнтинга.
- **2.** Геометрическая и волновая оптика(8ч.)[8,12] Основы геометрической оптики. Линзы и зеркала. Интерференция света. Дифракция света. Метод зон Френеля. Поляризация света.

Дисперсия света. Нормальная и аномальная дисперсия.

- **3. Квантовая оптика(6ч.)[9,12]** Законы теплового излучения. Гипотеза Планка. Квантовая природа излучения. Фотоэффект. Фотоны. Давление света. Эффект Комптона. Корпускулярно-волновой дуализм.
- **4.** Элементы атомной физики и квантовой механики. Элементы физики твердого тела(8ч.)[9,12] Ядерная модель атома Резерфорда. Постулаты Бора. Гипотеза де Бройля. Принцип неопределенности. Уравнение Шредингера. Корпускулярно-волновой дуализм: фотоны и микрочастицы. Волновая функция, и ее статистическое толкование. Правила отбора для квантовых переходов. Спонтанное и индуцированное излучение. Квантовые статистики. Зонная теория твердого тела. Проводимость металлов. Собственная и примесная проводимость полупроводников.
- **5.** Элементы ядерной физики {дискуссия} (4ч.)[9,12] Состав и характеристики атомного ядра. Ядерные силы и модели атомного ядра. Виды радиоактивного излучения. Ядерные реакции. Использование ядерной энергии. Элементарные частицы. Типы взаимодействия.

Практические занятия (17ч.)

- **1. Колебания и волны(2ч.)[8,11,13,14]** Применение физико-математического аппарата к решению задач по теме "Свободные, затухающие и вынужденные колебания. Механические и электромагнитные волны."
- **2.** Геометрическая и волновая оптика(4ч.)[8,12,14] Законы геометрической оптики. Линзы. Интерференция света. Дифракция света. Поляризация света. Дисперсия света.
- **3. Контрольная работа №1(2ч.)[8,11,12]** Контрольная работа №1. Модуль "Колебания и волны. Волновая оптика"
- **4. Квантовая оптика(4ч.)[9,12,14]** Законы теплового излучения. Внешний фотоэффект. Фотоны. Давление света. Эффект Комптона.
- **5.** Элементы атомной физики, квантовой механики и ядерной физики(3ч.)[9,12,14] Постулаты Бора. Гипотеза де Бройля. Принцип неопределенности. Уравнение Шредингера. Волновая функция. Ядерные реакции. Элементарные частицы.
- **6. Контрольная работа №2(2ч.)[9,12]** Контрольная работа №2. Модуль "Квантовая оптика. Атомная и ядерная физика"

- 1. Лабораторные работа №1. Планирование, подготовка и выполнение типовых экспериментальных исследований по заданной методике. {работа в малых группах} (3ч.)[5,8,9,11,12] Лабораторные работы выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам.
- 2. Лабораторная работа №2. Планирование, подготовка и выполнение типовых экспериментальных исследований по заданной методике. {работа в малых группах} (3ч.)[5,8,9,11,12] Лабораторные работы выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам.
- 3. Лабораторная работа №3. Планирование, подготовка и выполнение типовых экспериментальных исследований по заданной методике. {работа в малых группах} (3ч.)[5,8,9,11,12] Лабораторные работы выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам.
- **4.** Лабораторная работа №**4.** Планирование, подготовка и выполнение типовых экспериментальных исследований по заданной методике. {работа в малых группах} (3ч.)[5,8,9,11,12] Лабораторные работы выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам.
- 5. Лабораторная работа №5. Планирование, подготовка и выполнение типовых экспериментальных исследований по заданной методике. {работа в малых группах} (3ч.)[5,8,9,11,12] Лабораторные работы выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам.
- 6. Лабораторная работа №6. Планирование, подготовка и выполнение типовых экспериментальных исследований по заданной методике. {работа в малых группах} (2ч.)[5,8,9,11,12] Лабораторные работы выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам.

Самостоятельная работа (40ч.)

- **1. Проработка теоретического материала.(9ч.)[8,9,11,12,14]** Работа образовательными ресурсами.
- 2. Подготовка к практическим и лабораторным работам.(10ч.)[5,8,9,11,12] Работа с образовательными ресурсами.
- **3.** Подготовка к контрольным работам(6ч.)[8,9,11,12,14] Работа образовательными ресурсами.
- **3.** Выполнение индивидуального домашнего задания (ИДЗ)(3ч.)[8,9,11,12] Работа с образовательными ресурсами.
- **4. Подготовка к зачету.(12ч.)[8,9,11,12,14]** Работа с образовательными ресурсами.

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам: Лань, Университетская

библиотека он-лайн, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

- 1. Кустов С.Л. Лекции по физике. Механика. Молекулярная физика и термодинамика. Учебное пособие по курсу физики для студентов инженернотехнических специальностей очной и очно заочной формы обучения.- Барнаул: изд-во АлтГТУ, 2010. -130 с.,Прямая ссылка: http://elib.altstu.ru/eum/download/of/Kustov lec 1.pdf
- 2. Пацева Ю.В. Лекции по физике. Электромагнетизм: курс лекций /Ю. В. Пацева.-Барнаул: АлтГТУ, 2013.-77 с.

Дата первичного размещения: 14.09.2013.

Обновлено: 29.03.2016.

Прямая ссылка: http://elib.altstu.ru/eum/download/of/Paceva elmag.pdf

3. Лабораторные работы по физике. Часть І. Механика. Молекулярная физика и термодинамика. Учебное пособие и методические указания по выполнению лабораторных работ для студентов очной формы обучения. / Разработали и

составили: Андрухова О.В., Гурова Н.М., Жуковская Т.М., Кирста Ю.Б., Кустов С.Л., Науман Л.В., Пацева Ю.В., Романенко В.В., Старостенкова Н.А., Черных Е.В. – Барнаул: Изд-во АлтГТУ. – 2019. – 46 с.

Прямая ссылка:

 $http://elib.altstu.ru/eum/download/of/Andruhova_PhisLabsPt1_ump.pdf$

- 4. Лабораторные работы по физике. Часть II. Электричество и магнетизм. Учебное пособие и методические указания по выполнению лабораторных работ для студентов всех форм обучения. / Разработали и составили: Гурова Н. М., Кустов С. Л., Пацева Ю. В., Романенко В. В., Черных Е. В. Барнаул: Изд-во АлтГТУ. 2019. 84 с. Прямая ссылка: http://elib.altstu.ru/eum/download/of/Andruhova_PhisLabsPt2_ump.pdf
- 5. Лабораторные работы по физике. Часть III. Колебания и волны. Оптика, атомная и ядерная физика. Учебное пособие и методические указания по выполнению лабораторных работ для студентов очной формы обучения. / Разработали и составили: Л.Н. Агейкова, А.В. Векман, Н.М. Гурова, С.Л. Кустов, В.В. Романенко, Е.В. Черных, В.Л. Орлов, М.А. Гумиров Барнаул: Изд-во АлтГТУ. 2019. 78 с. Прямая ссылка: http://elib.altstu.ru/eum/download/of/Andruhova_PhisLabsPt3_ump.pdf

6. Перечень учебной литературы

- 6.1. Основная литература
- 6. Савельев, И.В. Курс общей физики. В 3 т. Том 1. Механика. Молекулярная физика [Электронный ресурс] : учебное пособие / И.В. Савельев. Электрон. дан. Санкт-Петербург : Лань, 2019. 436 с. Режим доступа: https://e.lanbook.com/book/113944. Загл. с экрана.
- 7. Савельев, И.В. Курс общей физики. В 3 т. Том 2. Электричество и магнетизм. Волны. Оптика [Электронный ресурс] : учебное пособие / И.В.

- Савельев. Электрон. дан. Санкт-Петербург: Лань, 2019. 500 с. Режим доступа: https://e.lanbook.com/book/113945. Загл. с экрана.
- 8. Савельев, И.В. Курс общей физики. В 3 т. Том 3. Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц [Электронный ресурс] : учебное пособие / И.В. Савельев. Электрон. дан. Санкт-Петербург : Лань, 2018. 320 с. Режим доступа: https://e.lanbook.com/book/106893. Загл. с экрана.
- 9. Грабовский, Р.И. Курс физики [Электронный ресурс] : учебное пособие / Р.И. Грабовский. Электрон. дан. Санкт-Петербург : Лань, 2012. 608 с. Режим доступа: https://e.lanbook.com/book/3178. Загл. с экрана.

6.2. Дополнительная литература

- 10. Кузнецов, С.И. Курс физики с примерами решения задач. Часть І. Механика. Молекулярная физика. Термодинамика [Электронный ресурс] : учебное пособие / С.И. Кузнецов. Электрон. дан. Санкт-Петербург : Лань, 2014. 464 с. Режим доступа: https://e.lanbook.com/book/42189. Загл. с экрана.
- 11. Кузнецов, С.И. Курс физики с примерами решения задач. Часть II. Электричество и магнетизм. Колебания и волны [Электронный ресурс] : учебное пособие / С.И. Кузнецов. Электрон. дан. Санкт-Петербург : Лань, 2014. 416 с. Режим доступа: https://e.lanbook.com/book/53682. Загл. с экрана.
- 12. Кузнецов, С.И. Курс физики с примерами решения задач. Часть III. Оптика. Основы атомной физики и квантовой механики. Физика атомного ядра и элементарных частиц [Электронный ресурс] : учебное пособие / С.И. Кузнецов. Электрон. дан. Санкт-Петербург : Лань, 2014. 336 с. Режим доступа: https://e.lanbook.com/book/53685. Загл. с экрана.
- 13. Физика. Практикум по решению задач [Электронный ресурс] : учебное пособие / Л.Л. Гладков [и др.]. Электрон. дан. Санкт-Петербург : Лань, 2014. 288 с. Режим доступа: https://e.lanbook.com/book/41013. Загл. с экрана.
- 14. Савельев, И.В. Сборник вопросов и задач по общей физике [Электронный ресурс] : учебное пособие / И.В. Савельев. Электрон. дан. Санкт-Петербург : Лань, 2018. 292 с. Режим доступа: https://e.lanbook.com/book/103195. Загл. с экрана.

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. Открытое образование https://openedu.ru/course/#query=физика
- 2. Образовательный портал АлтГТУ http://edu.astu.org.ru/moodle/course/view.php?id=273
- 3. Федеральный интернет-экзамен в сфере профессионального образования (ФЭПО) https://fepo.i-exam.ru

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

Фонд оценочных материалов (ФОМ) по дисциплине представлен в приложении А.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационнообразовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение
1	Windows
2	OpenOffice
3	Mozilla Firefox
4	LibreOffice
5	Антивирус Kaspersky

№пп	Используемые профессиональные базы данных и информационные
	справочные системы
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным
	ресурсам" для студентов и преподавателей; каталог ссылок на образовательные
	интернет-ресурсы (http://Window.edu.ru)
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к
	фондам российских библиотек. Содержит коллекции оцифрованных документов
	(как открытого доступа, так и ограниченных авторским правом), а также каталог
	изданий, хранящихся в библиотеках России. (http://нэб.pф/)

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы
учебные аудитории для проведения занятий лекционного типа
учебные аудитории для проведения занятий семинарского типа
учебные аудитории для проведения групповых и индивидуальных консультаций
учебные аудитории для проведения текущего контроля и промежуточной аттестации
помещения для самостоятельной работы
лаборатории

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».