АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ «Математика»

по основной профессиональной образовательной программе по направлению подготовки 08.03.01 «Строительство» (уровень прикладного бакалавриата)

Направленность (профиль): Производство и применение строительных материалов, изделий и конструкций

Общий объем дисциплины – 17 з.е. (612 часов)

В результате освоения дисциплины обучающийся должен обладать следующими компетенциями:

- ОПК-1: способностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и математического (компьютерного) моделирования, теоретического и экспериментального исследования;
- ОПК-2: способностью выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлечь их для решения соответствующий физикоматематический аппарат;

Содержание дисциплины:

Дисциплина «Математика» включает в себя следующие разделы:

Форма обучения очная. Семестр 1.

Объем дисциплины в семестре – 6.5 з.е. (234 часов)

Форма промежуточной аттестации – Экзамен

- 1. Линейная алгебра. Матрицы. Операции над матрицами. Определители квадратных матриц. Минор и алгебраическое дополнение элемента определителя. Основные свойства определителей. Обратная матрица. Теорема о существовании и единственности обратной матрицы. Ранг матрицы и его вычисление с помощью элементарных преобразований. Общая теория систем линейных алгебраических уравнений. Решение систем линейных уравнений по правилу Крамера и матричным способом. Метод Гаусса для решения определенных и неопределенных систем. Теорема Кронекера-Капелли. Условия существования ненулевого решения однородных систем линейных уравнений..
- **2. Векторная алгебра.** Понятие вектора. Коллинеарность и компланарность векторов. Линейные операции над векторами. Проекция вектора на ось. Линейная зависимость. Базис на плоскости и в про-странстве. Теорема о разложении вектора по базису. Прямоугольная декартова система координат. Линейные операции над векторами в координатах. Скалярное произведение векторов, его свойства и применение. Векторное и смешанное произведения векторов, их свойства и применение..
- 3. Аналитическая геометрия. Координатный метод. Уравнение линии на плоскости. Параметрические уравнения линии. Полярная система координат, связь между прямоугольными и полярными координатами. Построение линий, заданных в полярной системе координат. Прямая линия на плоскости: различные формы уравнения прямой, взаимное расположение прямых, расстояние от точки до прямой. Кривые второго порядка (эллипс, гипербола, парабола). Преобразование системы координат на плоскости (параллельный перенос). Общее уравнение кривой второго порядка и приведение его к каноническому виду. Понятие об уравнениях поверхности и линии в пространстве. Плоскость и прямая в пространстве. Основные задачи на плоскость и прямую в пространстве.
- **4. Поверхности второго порядка.** Поверхности второго порядка: типы, уравнения, построение, применение в быту, строительстве, архитектуре, искусстве..
- **5. Введение в математический анализ.** Множества, способы задания множеств, операции над множествами. Числовые множе-ства. Понятие факториала. Признаки делимости чисел. НОК и НОД. Числовые промежут-ки, окрестность точки. Комплексные числа, геометрическое изображение, формы записи. Сопряжённые комплексные числа. Действия над комплексными числами. Возведение комплексного числа в степень, формула Муавра. Извлечение корней из комплексных чи-сел. Решение квадратных уравнений. Многочлены, действия над ними. Деление

много-членов с остатком. Корни многочлена, разложение на множители. Выделение полного квадрата квадратного трёхчлена. Разложение правильной дроби на сумму простейших дробей. Числовые функции, способы задания, график функции. Основные характеристики функций. Обратные и сложные функции. Основные элементарные функции и их графики. Преобразования графика функции..

6. Предел и непрерывность функций. Предел функции. Односторонние пределы. Бесконечно малые и бесконечно большие функции, их свойства. Связь между бесконечно малыми и бесконечно большими функци-ями. Основные теоремы о пределах. Замечательные пределы. Сравнение бесконечно ма-лых и бесконечно больших функций. Эквивалентные бесконечно малые и бесконечно большие функции, их свойства. Применение эквивалентных величин для вычисления пределов. Понятие о непрерывности функции. Точки разрыва функции. Свойства непрерывных функций в точке. Свойства функций, непрерывных на отрезке. Непрерывность элементарных функций. Исследование функций на непрерывность..

Форма обучения очная. Семестр 2.

Объем дисциплины в семестре – 4.5 з.е. (162 часов)

Форма промежуточной аттестации – Экзамен

- 1. Дифференциальное исчисление функций одной переменной. Определение производной, её геометрический и механический смысл. Уравнение касательной и нормали к кривой. Связь дифференцируемости функции с её непрерывностью. Дифференцирование суммы, произведения, частного. Таблица производных основных элементарных функций. Производная сложной и обратной функций. Производные параметрически и неявно заданных функций. Производные высших порядков. Дифференциал функции, его геометрический смысл. Дифференциал суммы, произведения, частного. Инвариантность формы первого дифференциала...
- **2. Приложения производной.** Теоремы о среднем. Вычисление пределов с помощью правила Лопиталя. Исследование функций с помощью первой производной (интервалы возрастания и убывания функций, необходимое и достаточное условия существования экстремума). Наибольшее и наименьшее значение функции на отрезке. Исследование функций с помощью второй производной (выпуклость, вогнутость, точки перегиба графика функции). Общая схема исследования и построение графика функции..
- **3. Приложения производной.** Применение метода математического моделирования для решения профессионально-ориентированных задач на оптимизацию.
- **4. Неопределённый интеграл.** Первообразная функции. Неопределенный интеграл и его свойства. Таблица неопределенных интегралов. Замена переменных и интегрирование по частям. Интегрирование рациональных дробей. Интегрирование тригонометрических выражений. Интегрирование иррациональных выражений. Интегралы, не берущиеся в элементарных функциях..
- **5. Определённый интеграл.** Определенный интеграл как предел интегральной суммы. Геометрический и физический смысл. Формула Ньютона Лейбница. Основные свойства определённого интеграла. Замена переменных в определенном интеграле. Интегрирование по частям. Несобственные интегралы...
- **6. Определённый интеграл.** Геометрические и физические приложения определенного интеграла. Применение метода математического моделирования для решения профессионально-ориентированных задач...
- 7. Дифференциальные уравнения. Дифференциальные уравнения 1-го порядка. Общие понятия. Теорема о существовании и единственности решения задачи Коши. Дифференциальные уравнения с разделяющимися переменными, однородные, линейные дифференциальные уравнения 1-го порядка, уравнения Бернулли. Дифференциальные уравнения порядка выше первого. Общие понятия. Понижение порядка. Линейные дифференциальные уравнения второго порядка. Свойства решений. Теоремы о структуре общих решений. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами..

Форма обучения очная. Семестр 3.

Объем дисциплины в семестре – 6 з.е. (216 часов)

Форма промежуточной аттестации – Экзамен

1. Функции нескольких переменных. Способы задания функции нескольких переменных,

предел и непрерывность. Частные производные различных порядков. Производная неявно заданной функции. Полное приращение и полный дифференциал. Экстремум функции 2-х переменных. Производная по направлению и градиент функции. Касательная плоскость и нормаль к поверхности. Понятие о дифференциальных уравнениях в частных производных.

- **2. Числовые ряды.** Определение и свойства сходящегося числового ряда. Необходимый признак сходимости. Признаки сходимости рядов с положительными слагаемыми (признаки сравнения, Даламбера, Коши). Интегральный признак сходимости. Знакопеременные ряды. Абсолютная и условная сходимость. Знакочередующиеся ряды. Теорема Лейбница..
- **3. Функциональные ряды.** Степенные ряды. Теорема Абеля. Область сходимости степенного ряда. Ряды Тейлора. Разложение основных элементарных функций в ряд Маклорена. Приёмы разложения функций в степенные ряды. Приложения степенных рядов. Ряды Фурье..
- **4. Теория вероятностей.** Элементы комбинаторики. Случайные события и операции над ними. Вероятность. Свойства вероятности. Классическая, статистическая, геометрическая вероятности. Условная вероятность. Теоремы о вероятностях. Формулы полной вероятности и Байеса. Схема последовательных испытаний Бернулли. Теорема Бернулли и предельные теоремы в схеме Бернулли. Дискретные случайные величины. Ряд распределения. Функция распределения. Непрерывные случайные величины. Функция распределения и функция плотности распределения. Числовые характеристики случайных величин. Основные законы распределения случайных величин. Понятие о центральной предельной теореме..
- **5.** Элементы математической статистики. Основные задачи математической статистики. Вариационный, статистический и интервальный ряды. Понятие и построение полигона, гистограммы, эмпирической функции распределения и эмпирической функции плотности распределения. Числовые характеристики рядов. Статистические оценки параметров распределения..

Разработал:

доцент

кафедры ВМ Е.В. Колбина

Проверил:

Декан ФИТ А.С. Авдеев