Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан СТФ

И.В. Харламов

Рабочая программа дисциплины

Код и наименование дисциплины: Б1.В.ДВ.5.1 «Теплотехника»

Код и наименование направления подготовки (специальности): 15.03.02

Технологические машины и оборудование

Направленность (профиль, специализация): **Машины и аппараты пищевых производств**

Статус дисциплины: дисциплины (модули) по выбору

Форма обучения: заочная, очная

Статус	Должность	И.О. Фамилия	
Разработал	доцент	А.М. Николаев	
	доцент	А.М. Николаев	
	доцент	А.М. Николаев	
	Зав. кафедрой «ИСТиГ»	В.В. Логвиненко	
Согласовал	руководитель направленности	О.Н. Терехова	
	(профиля) программы		

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной

программы

Код		В результате изучения дисциплины обучающиеся должны:			
компетенции из УП и этап её формирования	Содержание компетенции	знать	уметь	владеть	
ПК-5	способностью принимать участие в работах по расчету и проектированию деталей и узлов машиностроительных конструкций в соответствии с техническими заданиями и использованием стандартных средств автоматизации проектирования	методы расчета и проектирования деталей и узлов машиностроительных конструкций; - структуру и содержание технического задания на расчет и проектирование деталей и узлов машиностроительных конструкций МАПП; - стандартные средства автоматизации проектирования	выполнять расчет и проектирование деталей и узлов машиностроительных конструкций в соответствии с техническими заданиями и использованием стандартных средств автоматизации проектирования; - разрабатывать, изучать и анализировать техническое задание на создание деталей, узлов и агрегатов машиностроительных конструкций МАПП; - использовать системы автоматизирования на основных этапах проектирования и создания конструкторской документации	навыками выполнения расчетов и проектированию деталей и узлов машиностроительны х конструкций; - навыками по применению стандартных средств автоматизации проектирования при расчете и проектировании деталей и узлов машиностроительны х конструкций; - способностью работать в команде, самостоятельно принимать решения, отстаивать свою точку зрения с учетом требований технологичности, ремонтопригодности, унификации и экономичности механических систем, охраны труда, экологии, стандартизации и других требований, предъявляемых к МАПП	

2. Место дисциплины в структуре образовательной программы

Дисциплины	(практики),	Математика, Физика
предшествующие	изучению	
дисциплины,	результаты	
освоения которых н	еобходимы	
для освоения	данной	
дисциплины.		
Дисциплины (практ	ики), для	Гидротермические процессы и оборудование
которых результаты	освоения	пищевых производств, Оборудование для тепловой
данной дисциплины бу	удут	обработки, Технологическое оборудование пищевых производств, Энергосберегающие технологии

необходимы,	как	входные
знания, умения	и влад	цения для
их изучения.		

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 2 / 72

	Виды занятий, их трудоемкость (час.)			Объем контактной	
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
заочная	8	0	4	60	14
очная	34	0	17	21	54

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: заочная

Семестр: 8

Лекционные занятия (8ч.)

1. Предмет теплотехники, его структура, цели и задачи. Техническая термодинамика {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5] Значение теплотехники формировании способности ПО расчету проектированию деталей И **УЗЛОВ** машиностроительных конструкций соответствии с техническими заданиями. Расчет и проектирование деталей и узлов теплотехнических конструкций в соответствии с техническими заданиями и использованием стандартных средств автоматизации проектирования. Термодинамическая система, параметры состояния, уравнение состояния. Термоди- намические процессы. Первый закон термодинамики: внутренняя энергия термодина-мической системы. Работа изменения ее объема. Теплота и работаформы микро-

макрофизического взаимодействия системы в процессах преобразования энергии. Аналитическое выражение первого закона термодинамики

2. Термодинамические процессы и циклы {лекция с разбором конкретных ситуаций} (2ч.)[3,5] Изохорный, изобарный, изотермический и адиабатный процессы. Политропный процесс и его обобщающее значение.

Термодинамические циклы: прямой—преобразование теплоты в работу; обратный — получение искусственного холода. Циклы Карно. Формулировки второго закона термодинамики.

- **3.** Теплопередача. Виды теплообмена, основные законы и уравнения {лекция с разбором конкретных ситуаций} (1ч.)[3,5] Теплопроводность, конвективная теплоотдача, тепловое излучение, теплопередача физические основы, основные законы и уравнения.
- **4. Расчет стационарных процессов теплообмена (лекция с разбором конкретных ситуаций) (3ч.)[3,4,5]** Стационарная теплопроводность через стенки различной формы. Расчет теплоотдачи с использованием обобщенных критериальных уравнений. Метод эффективных тепловых потоков в теплообмене излучением. Обобщенная методика расчета теплопередачи в стационарных условиях.

Практические занятия (4ч.)

- **1. Термодинамические процессы и циклы {работа в малых группах} (2ч.)[1,2]** Примеры расчетов основных термодинамических процес- сов и циклов на основе результатов их анализа, первого и второго законов термодинамики.
- **2.** Примеры расчета процессов теплообмена {работа в малых группах} (2ч.)[1,2,4] Стационарная теплопроводность в твердых телах правильной геометрической формы. Использование критериальных уравнений теплоотдачи для расчета конвективного тепло- обмена. Расчет теплопередачи между теплоносителями, разделенными твердой стенкой в стационарных условиях.

Самостоятельная работа (60ч.)

- **1. Проработка теоретического материала(41ч.)[3,4,5]** Работа с конспектом лекций, учебником, учебными пособиями, другими источниками.
- **2.** Выполнение семестровой контрольной работы(12ч.)[3,4,5,7] 1. Расчет процессов изотермического, адиабатного, политропного сжатия воздуха в одноступенчатом поршневом компрессоре. Определение соответствующих заданию параметров сжатия для каждого процесса и их сравнительное графическое графическое представление в рv- и Ts- диаграммах.
- 2. Расчёт процессов получения искусственного холода на примере реальной одноступенчатой холодильной машины класса умеренно низких температур. Определение основных технических параметров холодильной машины и графическое представление ее процессов в Тs- и Hs- диаграммах.
- 3. Расчет теплопередачи при вынужденном движении греющего теплоносителя внутри труб круглого сечения и поперечным свободном обтекании трубы нагреваемым теплоносителем.
- 4. Расчет рекуперативного теплообменника типа труба в —трубе при прямо- и противоточной схемах движения греющего и нагреваемого теплоносителей.

- **3. Подготовка к защите контрольной работы(3ч.)[3,4,5,7]** Работа с конспектом лекций, учебником, учебными пособиями, другими источниками.
- **4. Подготовка и сдача зачёта(4ч.)[3,4,5]** Работа с конспектом лекций, учебником, учебными пособиями, другими источниками.

Форма обучения: очная

Семестр: 6

Лекционные занятия (34ч.)

1. Предмет теплотехники, его структура, цели и задачи. Основные понятия и определения {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5] Предмет теплотехники, его структура, роль в формировании способности принимать участие в работах по расчету и проектированию деталей и узлов машиностроительных

конструкций, используя специализированные знания современных научнотехнических достижений в теплофизических процессах. Расчет и проектирование деталей и узлов теплотехнических конструкций в соответствии с техническими заданиями и использованием стандартных средств автоматизации проектирования.

- **2.** Техническая термодинамика {лекция с разбором конкретных ситуаций} (2ч.)[3,4] Предмет и метод термодинамики. Задачи термодинамики. Термодинамическая система, параметры состояния, уравнение состояния. Термодинамический процесс. Равновесные и неравновесные термодинамические процессы.
- 3. Первый закон термодинамики {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5] Внутренняя энергия термодинамической системы, ее изменение в термодинамическом процессе. Работа деформации объема термодинамической системы под воздействием теплоты. Ру —диаграмма термодинамического процесса. Теплота и работа формы микро- и макрофизического взаимодействия термодинамической системы с телами окружающей среды . Аналитическое выражение первого закона термодинамики.
- **4. Теплоемкость, энтальпия, энтропия {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5]** Виды удельной теплоемкости: массовая, объемная, мольная и соотношения между ними. Уравнение Майера. Вычисление средней теплоемкости на заданном интервале температур. Вычисление количества теплоты при нагревании (охлаждении) тел с помощью удельных теплоемкостей. Энтальпия, энтропия функции состояния термодинамической системы, их особенности и роль в тепловых расчетах. Вычисление изменения энтальпии и энтропии в тепловых процессах. Тs диаграмма термодинамических процессов.
- **5.** Термодинамические процессы идеального газа {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5] Обобщенная методика анализа процессов, особенности ее применения. Анализ изохорного, изобарного, изотермического и

адиабатного процессов.

Политропный процесс и его обобщающее значение. Графическое изображение группы политропных процессов в Pv- и Ts – диаграммах и их особенности

- **6.** Термодинамические процессы в парообразных средах на примере водяного пара {лекция с разбором конкретных ситуаций} (2ч.)[3,7] Использование паров в технологических процессах и установках. Парообразование при постоянном давлении и его графическое представление в Pv и Ts диаграммах. Свойства пара, области состояния, критическая и тройная точки. Определение параметров пара. Основные термодинамические процессы.
- 7. Влажный воздух {лекция с разбором конкретных ситуаций} (2ч.)[4,7] Основные понятия и определения, практическое применение в технологических процессах и установках. Параметры влажного воздуха. Нd диаграмма. Определение параметров влажного воздуха, анализ основных процессов: нагревание, охлаждение до температур выше и ниже точки росы, идеальная и реальная сушка материалов, смешение потоков с различными параметрами, удаление мелкодисперсной влаги при пневмотранспорте сыпучих материалов.
- **8. Основы термодинамики потока газов и паров {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5]** Первый закон термодинамики для потока. Располагаемая работа потока. Истечение газов и паров из сопел. Скорость истечения и массовый расход. Критический режим истечения. Скорость звука. Комбинированное сопло Лаваля. Дросселирование газов и паров.
- 9. Теоретические основы тепловых двигателей, холодильных машин и тепловых насосов. Второй закон термодинамики {лекция с разбором конкретных ситуаций (4ч.)[3,4,5] Непрерывное преобразования теплоты в работу.Прямой термодинамический цикл – цикл тепловых Высокотемпературный и низкотемпературный источники теплоты. Обобщенная термодинамическая тепловых двигателей. схема Термический Получение искусственного холода. Перенос теплоты от низкотемпературного источника к высокотемпературному. Обратный термодинамический цикл – цикл холодильных машин и тепловых насосов.

Холодильный коэффициент, холодопроизводительность, холодильная мощность, хладагенты.

Трансформация низкопотенциальной теплоты. Тепловой насос: области применения, коэффициент трансформации теплоты, теплопроизводительность, тепловая

мощность.

- 8.4. Циклы Карно. Формулировки второго закона термодинамики.
- **11.** Теплопередача. Введение {лекция с разбором конкретных ситуаций} (2ч.)[3,4] Предмет и задачи, значение в теплоиспользующих установках. Основные понятия и определения. Виды теплообмена:

теплопроводность, конвективная теплоотдача, теплообмен излучением. Сложный теплообмен.

12. Теплопроводность {лекция с разбором конкретных ситуаций} (2ч.)[3,4] Основной закон теплопроводности—закон Фурье. Коэффициент теплопроводности газов, жидкостей, диэлектриков (теплоизоляторов) и металлов. Стационарные

теплопроводность через однослойные и многослойные плоские, цилиндрические и сферические стенки.

13. Конвективный теплообмен. Теплоотдача {лекция с разбором конкретных ситуаций} (4ч.)[3,4] Основные понятия

и определения. Уравнение Ньютона – Рихмана. Коэффициент теплоотдачи, факторы, определяющие его величину. Определение коэффициента теплоотдачи – сложная много- факторная задача. Методы определения коэффициента теплоотдачи. Моделирование процессов теплоотдачи. Образование критериев подобия. Обобщение результатов моделирования и их представление в виде безразмерных критериальных уравнений теплоотдачи. Понятие об определяющем размере и температуре. Порядок расчета теплоотдачи с помощью критериальных уравнений.

- 14. Теплообмен излучением {лекция с разбором конкретных ситуаций} (2ч.)[3,4] Основные понятия и определения. Тепловой баланс и радиационные характеристики поверхности тел.Основные законы: Планка, Вина, Стефана-Больцмана, Кирхгофа.Теплообмен излучением между телами, разделенными диатермичной средой. Особенности теплообмена в поглощающих и излучающих средах.
- **15.** Сложный теплообмен теплопередача {лекция с разбором конкретных ситуаций} (2ч.)[3,4] Уравнение теплопередачи, коэффициент теплопередачи. Стационарные одномерные системы при граничных условиях III рода: расчет теплопередачи через плоские, цилиндрические и

Сферические стенки. Рациональный выбор материала и толщины теплоизоляции трубопроводов. Интенсификация теплопередачи.

16. Теплообменные аппараты {лекция с разбором конкретных ситуаций} (2ч.)[3,4] Классификация и назначение теплообменных аппаратов. Конструктивный и поверочный тепловые расчеты рекуперативных теплообменников. Влияние схем движения теплоносителей

Практические занятия (17ч.)

- **1.** Параметры состояния, уравнение состояния термодинамической системы {работа в малых группах} (2ч.)[1,2] Абсолютное, избыточное давление, разрежение —вакуум, удельный объем, абсолютная температура. Уравнение состояния идеального газа в теплотехнических расчетах на примерах простых производственных задач.
- 2. Первый закон термодинамики. Теплоемкость, энтальпия, энтропия. {работа в малых группах} (2ч.)[1,2] Пересчет удельной теплоемкости с одного вида на другой. Вычисление средней теплоемкости в произвольном интервале температур. Вычисление количества теплоты при нагревании произвольных массы, объема и количества киломолей рабочих тел в заданном интервале

температур. Расчет изменения энтальпии и энтропии в термодинамических процессах.

- **3. Термодинамические процессы идеального газа {работа в малых группах} (2ч.)[1,2]** Использование результатов анализа изохорного, изобарного, изотермического, адиабатного и политропного процессов в решении задач промышленной теплотехники.
- **4. Водяной пар. Определение Параметров и расчет основных термодинамических процессов {работа в малых группах} (1ч.)[1,2]** Hs диаграмма для воды и водяного пара. Определение термодинамических параметров воды и водяного пара при произвольной комбинации двух переменных. Расчет величин работы, теплоты и изменения внутренней энергии пара для основных термодинамических процессов: изохорного, изобарного изотермического, адиабатного. Графическое представление процессов в Hs диаграмме.
- **5.** Исследование процессов во влажном воздухе {работа в малых группах} (1ч.)[1,2] Нd диаграмма влажного воздуха. Определение параметров влажного воздуха при произвольной комбинации двух переменных. Анализ и расчет основных процессов:нагревание, охлаждение (до температур выше и ниже точки росы), идеальная и реальная сушка материалов, смешение потоков с различными параметрами.
- **6. Термодинамические циклы {работа в малых группах} (2ч.)[1,2]** Прямой и обратный циклы Карно. Определение параметров рабочего тела в характерных точках циклов. Полезная работа и теплота, термический КПД прямого цикла цикла тепловых двигателей. Холодопроизводительность, холодильная мощность, холодильный коэффициент обратного цикла —цикла холодильной машины. Особенности обратного цикла тепловых насосов. основные технические характеристики. тепловых насосов
- **6. Термодинамические циклы {работа в малых группах} (2ч.)[1,2,7]** Прямой и обратный циклы Карно. Определение параметров рабочего тела в характерных точках циклов. Полезная работа и теплота, термический КПД прямого цикла цикла тепловых двигателей. Холодопроизводительность, холодильная мощность, холодильный коэффициент обратного цикла —цикла холодильной машины. Особенности обратного цикла тепловых насосов. основные технические характеристики. тепловых насосов
- 7. Стационарная теплопроводность {работа в малых группах} (2ч.)[1,2] Расчет теплового потока, распределения температур в однородных и изотропных, многослойных плоских,
- цилиндрических и сферических стенках. Определение значений температур в месте контакта слоев для многослойных стенок той же формы.
- **8. Конвективный теплообмен, теплоотдача {работа в малых группах} (2ч.)[1,2]** Расчет стационарного процесса теплоотдачи с помощью критериальных уравнений при вынужденном течении теплоносителя в трубах, каналах не круглого сечения, при наружном обтекании поверхностей тел. Теплоотдача при свободном движении теплоносителя.

9. Сложный теплообмен – теплопередача {работа в малых группах} (1ч.)[1,2] Вычисление теплового потока, коэффициента теплопередачи, температур поверхностей, омываемых греющим и нагреваемым теплоносителями, при теплопереносе через плоские, цилиндрические и сферические стенки

Самостоятельная работа (21ч.)

- **1. Подготовка к лекциям(7ч.)[3,6,7]** Проработка теоретического материала (работа с конспектом лекций, учебником, учебными пособиями, другими источниками)
- **2. Подготовка к практическим занятиям(6ч.)[3,6,7]** Проработка теоретического материала (работа с конспектом лекций, учебником, учебными пособиями, другими источниками)
- **3. Подготовка к контрольным работам(2ч.)[2,3,5]** Работа с конспектом лекций, учебником, учебными пособиями, другими источниками
- **4. Подготовка к тестированию(2ч.)[2,3,5]** Работа с конспектом лекций, учебником, учебными пособиями, другими источниками
- **5.** Подготовка к промежуточной аттестации (зачет)(4ч.)[3,4,5] Проработка теоретического материала (работа с конспектом лекций, учебником, учебными пособиями, другими источниками).

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам: Лань, Университетская библиотека он-лайн, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

- 1. Бахтина И.А., Троян Е.Н., Николаев А.М. Теплотехника [Электронный ресурс]: Учебно-методическое пособие. Электрон. дан. Барнаул: АлтГТУ, 2015. Режим доступа: http://new.elib.altstu.ru/eum/download/tgivv/Trojan_teplotechnic.pdf
- 2. Синявский, Ю.В. Сборник задач по курсу "Теплотехника" [Электронный ресурс] : учебное пособие / Ю.В. Синявский. Электрон. дан. Санкт-Петербург : ГИОРД, 2010. 128 с. Режим доступа: https://e.lanbook.com/book/4907. Загл. с экрана

6. Перечень учебной литературы

- 6.1. Основная литература
- 3. Бахтина И.А., Троян Е.Н., Николаев А.М. Теплотехника [Электронный ресурс]: Учебно-методическое пособие. Электрон. дан. Барнаул: АлтГТУ, 2015. Режим доступа:

http://new.elib.altstu.ru/eum/download/tgivv/Trojan_teplotechnic.pdf

4. Круглов Г.А., Булгакова Р.И., Круглова Е.С. Теплотехника: Учебное пособие. – СПб.: Издательство «Лань», 2012. – 208 с. – Доступ из ЭБС «Лань» http://e.lanbook.com/books/element.php?pl1 cid=25&pl1 id=3900

6.2. Дополнительная литература

- 5. Яновский А.А. Теоретические основы теплотехники: учебное пособие / А.А. Яновский; Ставропольский гос. аграрный ун-т. Ставрополь, 2017. 104 с. Доступ из ЭБС «Университетская библиотека онлайн» http://biblioclub.ru/index.php?page=book_view_red&book_id=484962
- 6. Лекции по теплотехнике: конспект лекций / составитель В.А. Никитин; Оренбургский ун-т.- Оренбург: ОГУ, 2011.-532 с. Доступ из ЭБС «IPR-books»: http://www.iprbookshop.ru/21604.html
- 7. Третьякова, Н.Г. Тепло- и хладотехника [Электронный ресурс] : учебное пособие / Н.Г. Третьякова, Л.В. Лифенцева, В.А. Ермолаев. Электрон. дан. Кемерово : КемГУ, 2017. 104 с. Режим доступа: https://e.lanbook.com/book/103933. Загл. с экрана.

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

8. Единое окно доступа к образовательным ресурсам http://window.edu.ru/

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

Фонд оценочных материалов (ФОМ) по дисциплине представлен в приложении А.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационнообразовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение		
1	LibreOffice		
2	Windows		
3	Антивирус Kaspersky		

№пп	Используемые профессиональные базы данных и информационные			
	справочные системы			
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным			
	ресурсам" для студентов и преподавателей; каталог ссылок на образовательные			
	интернет-ресурсы (http://Window.edu.ru)			
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к			
	фондам российских библиотек. Содержит коллекции оцифрованных документов			
	(как открытого доступа, так и ограниченных авторским правом), а также каталог			
	изданий, хранящихся в библиотеках России. (http://нэб.pф/)			

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы
учебные аудитории для проведения занятий лекционного типа
учебные аудитории для проведения занятий семинарского типа
учебные аудитории для проведения групповых и индивидуальных консультаций
учебные аудитории для проведения текущего контроля и промежуточной аттестации
помещения для самостоятельной работы

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».