Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ФИТ А.С. Авдеев

Рабочая программа дисциплины

Код и наименование дисциплины: **Б1.В.5** «**Цифровые измерительные** устройства»

Код и наименование направления подготовки (специальности): 12.03.01 Приборостроение

Направленность (профиль, специализация): **Измерительные информационные технологии**

Статус дисциплины: часть, формируемая участниками образовательных отношений (вариативная)

Форма обучения: очная

Статус	Должность	И.О. Фамилия	
Разработал	доцент	В.Г. Лукьянов	
	Зав. кафедрой «ИТ»	А.Г. Зрюмова	
Согласовал	руководитель направленности (профиля) программы	А.Г. Зрюмова	

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной

программы

програм Код		В результате изуче	ния дисциплины обуч	нающиеся должны:
компетенции из УП и этап её формирования	Содержание компетенции	знать	уметь	владеть
ОПК-6	способностью собирать, обрабатывать, анализировать и систематизировать научно-техническую информацию по тематике исследования	методы поиска, обработки, анализа и систематизации научно-технической информации, в том числе при создании цифровых измерительных устройств.	осуществлять поиск, обработку, анализ и систематизацию научно-технической информации по тематикам исследования.	навыками поиска, обработки, анализа и систематизации научно-технической информации по тематике исследования
ПК-3	способностью к проведению измерений и исследования различных объектов по заданной методике	-методы и средства измерений, в том числе цифровые и аналоговые измерительные устройства; -методы проведения экспериментальных исследований различных объектов.	проводить измерения электрических и неэлектрических величин по заданной методике, в том числе с помощью цифровых и аналоговых измерительных устройств.	навыками проведения измерений и исследования различных объектов по заданной методике.
ПК-5	способностью к анализу, расчету, проектированию и конструированию в соответствии с техническим заданием типовых систем, приборов, деталей и узлов на схемотехническом и элементном уровнях	типовые системы, приборы, узлы и детали на схемотехническом и элементном уровнях и типовые методы их расчета при проектировании.	-анализировать принцип работы и состав приборов и систем; -рассчитывать и проектировать элементы, узлы и устройства в соответствии с техническим заданием.	-навыками анализа принципов работы и состава приборов и систем; -расчёта, проектирования и конструирования элементов, узлов и устройств на схемотехническом и элементном уровнях.

2. Место дисциплины в структуре образовательной программы

	1001			
Дисциплины	(практики),	Информатика, Методы и средства измерений,		
предшествующие изучению		Неразрушающие методы контроля технологических		
дисциплины, результаты		процессов, Преобразование измерительных сигналов,		
освоения которых необходимы		Приборы в физической лаборатории, Теоретические основы измерительных и информационных		
для освоения	данной			
дисциплины.		техника		
Дисциплины (прав	ктики), для	Выпускная квалификационная работа,		
которых результат	ъ освоения	Измерительные информационные системы,		
данной дисципли	ины будут	Интерфейсы информационных процессов		
необходимы, кан	к входные			
знания, умения и вла	адения для			

их изучения.	

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 4 / 144 Форма промежуточной аттестации: Экзамен

	Виды занятий, их трудоемкость (час.)			Объем контактной	
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
очная	13	26	13	92	62

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: очная

Семестр: 8

Лекционные занятия (13ч.)

- 1. Лекция 1. Анализ и систематизация научно-технической информации по методам {с элементами электронного обучения и дистанционных образовательных технологий} {с элементами электронного обучения и дистанционных образовательных технологий} (2ч.)[4,5,9] Времяимпульсный, частотно-имульсный, кодоимпульсный, метод пространственного кодирования и метод совпадений.
- 2. Лекция 2. Основные технические характеристики ЦИУ {с элементами электронного обучения и дистанционных образовательных технологий} {с элементами электронного обучения и дистанционных образовательных технологий} (2ч.)[2,4,7] Диапозон измерения, чувствительность и разрешающая способность, быстродействие, класс точности и надежность. Формирование способности к анализу, расчету, проектированию и конструированию в соответствии с техническим заданием типовых систем, приборов, деталей и узлов на схемотехническом и элементном уровнях.
- 3. Лекция 3. Цифровые отсчетные устройства. Проектирование общих структурных схем {с элементами электронного обучения и дистанционных образовательных технологий} {с элементами электронного обучения и дистанционных образовательных технологий} (2ч.)[2,6,8,9] Обобщенная

- структура цифровых отсчетных устройств. Классификация цифровых индикаторов, применяемых в современных ЦИУ. Основные технические характеристики и варианты цифровых индикаторов.
- 4. Лекция 4. Анализ и систематизация научно-технической информации по цифровым методам измерений и цифровым измерительным устройствам {с элементами электронного обучения и дистанционных образовательных технологий} {с элементами электронного обучения и дистанционных образовательных технологий} (2ч.)[4,5,8] Частотомеры, хронометры, фазометры и мосты, структурные схемы, принцип работы, временные диаграммы сигналов, погрешности и способы их уменьшения.
- 5. Лекция 5.Анализ и расчет схемотехнических решений цифровых вольтметров постоянного тока по заданным метрологическим характеристикам {с элементами электронного обучения и дистанционных образовательных технологий} {с элементами электронного обучения и дистанционных образовательных технологий} (3ч.)[3,4,5] Времяимпульсные цифровые вольтметры с линейной разверткой и двухтактным интегрированием, частотно-импульсные и кодоимпульсные цифровые вольтметры, структурные схемы, принцип работы, временные диаграммы сигналов, погрешности и методы их уменьшения.
- 6. Лекция 6.Проектирование и конструирование элементов автоматизации вспомогательных операций в цифровых вольтметрах {с элементами электронного обучения и дистанционных образовательных технологий} {с элементами электронного обучения и дистанционных образовательных технологий} (2ч.)[4,5,6,9] Определение полярности измеряемого напряжения, выбор диапозона измерений, коррекция смещения нулевого уровня и калибровка.

Практические занятия (13ч.)

- 7. Практическое занятие № 1 {работа в малых группах} (2ч.)[2,4,5] Анализ и расчет параметров и метрологических характеристик узлов цифровых вольтметров в соответствии с техническим заданием. Задача №1. Найти предел допускаемой абсолютной погрешности ЦВ класса 0.05/0.02 на диапазоне измерений с максимальным значением 1.2В при измерении напряжения 0.5В.
- Задача №2. Чему равно максимальное значение относительной погрешности дискретности ЦВ с чувствительностью 10мкВ при значении измеряемого напряжения 50мВ?
- Задача №3. Напишите обозначение класса точности ЦИП, если известно, что предел допускаемой погрешности при максимальном значении измеряемой величины составляет $\pm 0.01\%$, а при значении равном половине измеряемой величины -0.015%.
- **8.** Практическое занятие № 2 {работа в малых группах} (2ч.)[2,4,5] Анализ и расчет метрологических характеристик узлов цифровых частотомеров/фазометров в соответствии с техническим заданием. Задача №4. На диапазоне 0-1В ЦВ показал 0.2001В. Найти максимальное значение абсолютной, относительной и

приведенной погрешности дискретности.

Задача №5. Имеется два цифровых вольтметра. ЦВ1 класса точности 0.1/0.05, а ЦВ2 класса точности 0.15/0.025. Диапазон обоих вольтметров 0-1В. При каких значениях измеряемого напряжения выгоднее использовать ВЦ1 (т.е. меньше допускаемая погрешность)

9. Практическое занятие № 3 {работа в малых группах} (2ч.)[2,5] Анализ и расчет схемотехнических параметров цифровых вольтметров в соответствии с техническим заданием. Задача №6. В цифровом фазометре-периодометре применен генератор импульсов, следующих с частотой 1МГц. При подаче на вход прибора противофазных напряжений при измерении фазового сдвига на счетчик проходит 104 импульсов. Какова частота этих напряжений?

Задача №7. В цифровом частотомере со шкалой 9999999 предусмотрено 3 интервала времени счета 0,1, 1, 10 сек. Укажите диапазон измеряемой частоты для каждого из этих трех значений при условии минимальной погрешности.

Задача №8. Во сколько раз должен делить образцовую частоту делитель частоты в цифровом фазометре, для того чтобы результат измерения был представлен в угловых минутах и квант составлял одну минуту.

Задача №9. В цифровом частотомере-периодомере применены кварцевый резонатор с частотой 1МГц и делитель частоты, обеспечивающий интревал времени счета 1 сек. При какой частоте входного сигнала погрешности измерения частоты и периода будут одинаковыми?

Задача №10. Определить разность фаз двух напряжений частотой 100Гц, если на счетчик фазометра поступает 10000 импульсов при частоте задающего генератора f0=1МГц.

10. Практическое занятие №4 {работа в малых группах} (2ч.)[2,3,5] Анализ и расчет схемотехнических параметров цифровых вольтметров на основе времяимпульсного метода в соответствии с техническим заданием. Задача №11. Как изменится показание ВИЦВ с линейной разверткой, если при том же значении измеряемого напряжения в 2 раза увеличить емкость конденсатора в генераторе линейно изменяющегося напряжения.

Задача №12. Как изменятся показания ВИЦВ с линейной разверткой, если при том же значении измеряемого напряжения в 2 раза уменьшить опорное напряжение на интеграторе в схеме генератора линейно изменяющегося напряжения.

Задача №13. В ЦВ со шкалой 1,9999 В применяется времяимпульсный метод с линейной разверткой. Найдите частоту импульсов, поступающих на счетчик импульсов, если известно, что коэффициент преобразования измеряемого напряжения в интервал времени составляет 10-2 с/В.

11. Практическое занятие №5 {работа в малых группах} (2ч.)[2,5,6] Расчет метрологических параметров цифровых вольтметров на основе времяимпульсного метода. Задача №14. В ЦВ со шкалой 1,999 В применен частотно-импульсный метод. Найдите значение коэффициента преобразования напряжения в частоту, если интервал времени счета 10мс.

Задача №15. Сколько времени занимает одно измерение КИЦВ с диапазоном

 $\pm 11,9999$ В и кодом 2421, если каждый такт занимает 100 мкс.

Задача №16. Применен времяимпульсный метод преобразования интервалов времени в двоично-десятичный код. Какое минимальное число разрядов должен иметь счетчик, если $\Delta t = 0 \div 5$ мс, а t = 1Мt t

12. Практическое занятие №6 {работа в малых группах} (3ч.)[2,4,6] Расчет метрологических параметров цифровых вольтметров на основе кодоимпульсного АЦП. Задача №17. Сколько времени занимает одно преобразование напряжения постоянного тока в двоичный код в кодоимпульсном аналогово-цифровом преобразователе с диапазоном входного сигнала от 0 до 1.023В и квантом 1мВ, если один такт занимает 1 мкс?

Задача №18. В кодоимпульсном ЦВ с диапазоном 1,99В и сопротивлением весовых коэффициентов разрядов 2:4:2:1 получен код 110111001. Какому значению измеряемого напряжения он соответствует?

Задача №19. Сколько двоичных разрядов должен содержать счетчик импульсов, входящий в состав распределения импульсов КИЦВ с диапазоном ±1,199В?

Указание: количество разрядов счетчика «n» должно удовлетворять условию 2n=m, где m – количество тактов в ЦВ.

Лабораторные работы (26ч.)

- 13. Лабораторная работа № 1.«Исследование передаточных характеристик аналого-цифрового преобразователя (АЦП) постоянного напряжения в двоичный код» {работа в малых группах} (2ч.)[1,6,7,11]
- 14. Лабораторная работа № 2. «Экспериментальное исследование методики измерения постоянного напряжения кодоимпульсного АЦП в двоичный код». {работа в малых группах} (4ч.)[1,6,7,9]
- 15. Лабораторная работа № 3. «Проведение измерений и исследование режимов, источников погрешностей и частотных характеристик электрических колебаний цифровым частотомером согласно ГОСТ». {работа в малых группах} (4ч.)[1,6,8]
- 16. Лабораторная работа № 4.«Проведение измерение разности фаз с помощью цифрового фазометра и исследование его метрологических характеристик при помощи статистических методик». {работа в малых группах} (4ч.)[1,8]
- 17. Лабораторная работа № 5. «Экспериментальное исследование ЦВ с двухтактным интегрированием». {работа в малых группах} (4ч.)[1,4,8]
- 18. Лабораторная работа № 6. «Измерение разности фаз с помощью цифрового фазометра». {работа в малых группах} (4ч.)[1,4,8]
- 19. Лабораторная работа № 7. «Проведение измерений для исследования режимов, погрешностей частотных и временных характеристик электрических колебаний цифровым частотомером». {работа в малых группах} (4ч.)[1,8]

Самостоятельная работа (92ч.)

- 20. Подготовка к лекциям (1 час на лекцию)(6ч.)[3,4,5,6,7,8,9,10,11]
- 21. Подготовка к практическим занятиям (2 часа на занятие)(12ч.)[2,4,6,10]
- 22. Подготовка к лабораторным работам (1 час на работу)(7ч.)[1,5,9,10]
- 23. Подготовка к контрольным опросам (4 час. на опрос)(8ч.)[3,4,5,6,7,8,9]
- 24. Экзамен(27ч.)[1,2,3,4,5,6,7,8,9]
- 25. Выполнение и защита курсовой работы(32ч.)[2,3,5,6,9]

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам: Лань, Университетская библиотека он-лайн, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

- 1. Лукьянов В.Г. Методические указания к лабораторным работам по дисциплине "Цифровые измерительные устройства" [Электронный ресурс]: методические указания.-Электрон. дан.-Барнаул: АлтГТУ, 2015.- Режим доступа: http://new.elib.altstu.ru/eum/download/it/Lukjanov-ciu.pdf, авторизован
- 2. Лукьянов В.Г. Методические указания к расчету и проектированию «Цифровых измерительных устройств» [Электронный ресурс]: методические указания.-Электрон. дан.-Барнаул: АлтГТУ, 2015.- Режим доступа: http://new.elib.altstu.ru/eum/download/it/Lukjanov-ciu.pdf, авторизован

6. Перечень учебной литературы

- 6.1. Основная литература
- 3. Аверченков О. Е. Основы схемотехники аналого-цифровых устройств / О. Е. Аверченков. Москва: Изд-во «ДМК Пресс», 2012. 80 с. ЭБС «Лань».
- 4. Бабич, Н.П. Основы цифровой схемотехники [Электронный ресурс] : учебное пособие / Н.П. Бабич, И.А. Жуков. Электрон. дан. Москва : ДМК Пресс, 2010. 480 с. Режим доступа: https://e.lanbook.com/book/60977. Загл. с экрана.

6.2. Дополнительная литература

- 5. Лаврентьев Б. Ф. Схемотехника электронных средств: Учебное пособие / Б. Ф. Лаврентьев. Москва: Академия, 2010. 334с.: ил. 10 экз.
- 6. Муханин, Лев Григорьевич. Схемотехника измерительных устройств [Электронный ресурс] : [учебное пособие для вузов, обучающихся по направлению подготовки 200100 Приборостроение и специальности 200101 Приборостроение] / Л. Г. Муханин. 4-е изд., стер. Электрон. текстовые дан. Санкт-Петербург [и др.] : Лань, 2019. 288 с. : ил. (Учебники для вузов. Специальная литература). Режим доступа: https://e.lanbook.com/book/111201. -

ISBN 978-5-8114-0843-6 : Б. ц.

- 7. Гудко, Н.И. Синтез цифровых устройств циклического действия [Электронный ресурс] / Н.И. Гудко. Электрон. дан. Москва : Горячая линия-Телеком, 2014. 96 с. Режим доступа: https://e.lanbook.com/book/63234. Загл. с экрана.
- 8. Топильский В. Б. Схемотехника измерительных устройств: [учебное пособие] / В. Б. Топильский. Москва: Бином. Лаборатория знаний, 2012. 232с.: ил. 13 экз.

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 9. Электронный курс по дисциплине http://it.fitib.altstu.ru/neud/ciu/
- 10. Цифровые измерительные приборы http://электротехнический-портал.рф/electro-izmerenya/279-cifrovye-izmeritelnye-pribory.html
- 11. Волович, Г.И. Схемотехника аналоговых и аналогово-цифровых электронных устройств [Электронный ресурс] / Г.И. Волович. Электрон. дан. Москва : ДМК Пресс, 2018. 636 с. Режим доступа: https://e.lanbook.com/book/107891. Загл. с экрана.

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

Фонд оценочных материалов (ФОМ) по дисциплине представлен в приложении А.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационно-образовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение	
1	Windows	
2	OpenOffice	
3	Mathcad 15	
4	LibreOffice	
5	Антивирус Kaspersky	

№пп	Используемые профессиональные базы данных и информационные
	справочные системы
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным
	ресурсам" для студентов и преподавателей; каталог ссылок на образовательные
	интернет-ресурсы (http://Window.edu.ru)
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к
	фондам российских библиотек. Содержит коллекции оцифрованных документов
	(как открытого доступа, так и ограниченных авторским правом), а также каталог
	изданий, хранящихся в библиотеках России. (http://нэб.рф/)

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы
учебные аудитории для проведения занятий лекционного типа
учебные аудитории для проведения занятий семинарского типа
учебные аудитории для проведения курсового проектирования (выполнения курсовых работ)
учебные аудитории для проведения групповых и индивидуальных консультаций
учебные аудитории для проведения текущего контроля и промежуточной аттестации
помещения для самостоятельной работы
лаборатории

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».