Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ФСТ

С.В. Ананьин

Рабочая программа дисциплины

Код и наименование дисциплины: Б1.В.3 «Прикладная механика»

Код и наименование направления подготовки (специальности): 13.03.02

Электроэнергетика и электротехника

Направленность (профиль, специализация): Электроснабжение

Статус дисциплины: часть, формируемая участниками образовательных

отношений (вариативная)

Форма обучения: заочная

Статус	Должность	И.О. Фамилия
Разработал	профессор	Н.В. Перфильева
	Зав. кафедрой «МиИ»	А.А. Максименко
Согласовал	руководитель направленности (профиля) программы	А.А. Грибанов

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной

программы

програм Код		В результате изучения дисциплины обучающиеся должны:			
компетенции из УП и этап её формирования	Содержание компетенции	знать	уметь	владеть	
ОПК-2	способностью применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	- основные законы механики; - основные виды реакций конструкций на возмущающие воздействия; - основные методы расчётного определения опорных реакций, внутренних усилий, деформаций и перемещений конструкций; - основные виды экспериментального определения механических свойств материалов.	определять расчётным путём возможные опорные реакции, внутренние усилия, деформации и перемещения конструкций	навыками расчётного определения опорных реакций, внутренних усилий, деформаций и перемещений конструкций	
ПК-4	способностью проводить обоснование проектных решений	методы расчёта элементов конструкций на прочность, жёсткость и устойчивость, классические теории прочности, метод сечений	определять теоретически внутренние усилия, напряжения, деформации и перемещения, подбирать необходимые размеры сечений стержней из условий прочности, жёсткости и устойчивости	навыками определения напряжённо- деформированного со-стояния конструкций при различных воздействиях с помощью теоретических методов	

2. Место дисциплины в структуре образовательной программы

Дисциплины	(практики),	Математика, Физика	
предшествующие	изучению		
дисциплины,	результаты		
освоения которых	необходимы		
для освоения	данной		
дисциплины.			
Дисциплины (прак	стики), для	Научно-исследовательская	работа,
которых результати	ы освоения	Электроэнергетические системы и сети	
данной дисципли	ны будут		
необходимы, как	входные		
знания, умения и вла	дения для		

их изучения.	
--------------	--

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 5 / 180 Форма промежуточной аттестации: Экзамен

	Виды занятий, их трудоемкость (час.)			Объем контактной	
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
заочная	8	4	4	164	22

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: заочная

Семестр: 3

Лекционные занятия (8ч.)

- 1. Введение. Основные понятия и задачи курса прикладной механики. Метод сечений. Растяжение-сжатие. {лекция с разбором конкретных ситуаций} (2ч.) [5,6,8,9] Формирование способности использовать методы математического моделирования при проектировании механических конструкций: Понятие о силе и системе сил. Аксиомы статики. Связи и реакции связей. Виды опорных устройств. Плоская система сходящихся сил. Проекция силы на ось. Определение равнодействующей системы сил аналитическим способом. Пара сил и момент силы относительно точки. Главный вектор и главный момент. Уравнения равновесия произвольной плоской системы сил. Балочные системы. Виды нагрузок. Определение опорных реакций. Определение внутренних силовых факторов методом сечений. Построение эпюр продольных сил, крутящих моментов. Определение напряжений, деформаций и перемещений при растяжении-сжатии. Закон Гука при растяжении-сжатии, условие прочности.
- 2. Сдвиг. Кручение. Напряжения и деформации. Расчеты на прочность и жесткость при сдвиге и кручении.(2ч.)[2,5,6] Формирование способности использовать методы математического моделирования при проектировании механических конструкций: Внутренние силовые факторы при сдвиге и кручении. Правило знаков. Построение эпюр. Правила контроля эпюр. Деформации при чистом сдвиге и кручении. Касательные напряжения и расчет на прочность при

сдвиге и кручении.

- **3.** Геометрические характеристики плоских фигур.(2ч.)[4,5,7,9] Формирование способности использовать методы математического моделирования при проектировании механических конструкций: Статический момент площади сечения. Центр тяжести площади. Моменты инерции плоских фигур. Моменты инерции сложных сечений. Моменты инерции относительно параллельных осей. Главные оси и главные моменты инерции. Моменты сопротивления.
- 4. Изгиб. Классификация видов изгиба. Внутренние силовые факторы при изгибе. Напряжения и деформации при изгибе. {лекция с разбором конкретных ситуаций} (2ч.)[4,5,8,9] Формирование способности использовать методы математического моделирования при проектировании механических конструкций: Изгиб. Классификация видов изгиба. Внутренние силовые факторы при изгибе. Правило знаков. Дифференциальные зависимости при прямом поперечном изгибе. Построение эпюр поперечных сил и изгибающих моментов. Правила контроля эпюр. Деформации при чистом изгибе. Нормальные напряжения при изгибе. Расчет на прочность при изгибе. Линейные и угловые перемещения при изгибе. Дифференциальное уравнение изогнутой оси балки и его интегрирование. Определение перемещений методом Мора. Способы вычисления интеграла Мора. Правило Верещагина.

Практические занятия (4ч.)

- 1. Аксиомы статики. Определение реакций опор.Определение внутренних методом шарнирно-стержневых усилий сечений плоских системах.(2ч.)[2,3,4,6,9] Формирование способности математического анализа механической системы: Аксиомы статики. Определение возможных направлений реакций опор. Составление уравнений равновесия для балок и рам. Правила знаков. Определение внутренних усилий методом сечений в балках при растяжении-сжатии при кручении: продольных И сил моментов. Определение размеров поперечного сечения при изгибе балок. Подбор симметричных и несимметричных сечений из условия прочности при изгибе. Обоснование проектных решений.
- Определение геометрических характеристик плоских сечений. Определение центра тяжести И моментов инерции составного сечения.(2ч.)[2,4,7,9] Формирование способности применять математический аппарат при проектировании: Определение статических моментов, осевых моментов инерции сечений. Определение центра тяжести и моментов инерции составного сечения.

Лабораторные работы (4ч.)

1. Испытание на растяжение образца из малоуглеродистой стали. Испытание образцов из различных материалов на сжатие. {работа в малых

группах} (2**ч.**)[1,5] Формирование способностей проведения экспериментальных исследований для механических систем и конструкций: Испытание на растяжение образца из малоуглеродистой стали.

Испытание образцов из различных материалов на сжатие. Защита лабораторной работы.

2. Опытная проверка формулы нормальных напряжений при плоском изгибе. {работа в малых группах} (2ч.)[1,5,8] Формирование способностей проведения экспериментальных исследований для механических систем и конструкций: Опытная проверка формулы нормальных напряжений при плоском изгибе.Защита лабораторной работы.

Самостоятельная работа (164ч.)

- **1. Выполнение контрольной работы.** (50ч.)[2,4,7] Выполнение контрольной работы. Решение задач по темам: метод сечений и определение внутренних силовых факторов, расчет на прочность при растяжении-сжатии, кручение, плоский изгиб и подбор поперечных сечений балок.
- 2. Подготовка к защите лабораторных работ.(25ч.)[1,5,7] Изучение теории по темам:растяжение-сжатие, плоский прямой изгиб.
- **3.** Изучение теоретического материала.(80ч.)[5,8,9] Подготовка к практическим занятиям по решению задач на прочность при растяжении, кручении и изгибе, по определению геометрических характеристик плоских сечений.
- **4. Подготовка к экзамену.(9ч.)[5,7,8]** Подготовка по теоретическому материалу и решению экзаменационных задач.

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам: Лань, Университетская библиотека он-лайн, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

- 1. Сборник лабораторных работ по механике: Методические указания. Коллектив авторов кафедры «Механика и инноватика». Алт. гос. техн. ун-т им. И.И. Ползунова. Барнаул: Изд-во АлтГТУ, 2016. -85 с. Прямая ссылка: http://elib.altstu.ru/eum/download/mii/Cherkanov_mex_lab.pdf
- 2. Алексейцев А.И. Определение внутренних усилий методом сечений: Методические указания и варианты заданий/А.И. Алексейцев, А.Д. Борисова, Е.В.Черепанова; Алт. гос. тех. ун-т им. И. И. Ползунова. Барнаул, 2018. 60 с. Прямая ссылка: http://elib.altstu.ru/eum/download/mii/Alexeytsev_MetSech_mu.pdf
- 3. Алексейцев А.И. Расчет на прочность при растяжении (сжатии): Методические указания и варианты заданий/А. И. Алексейцев, А. Д. Борисова; Алт. гос. тех. ун-т им. И. И. Ползунова. Барнаул, 2018. 35 с. Прямая ссылка:

http://elib.altstu.ru/eum/download/mii/AleksBor RaschProchRastSz mu.pdf

4. Барабаш, Ю.Г. Сопротивление материалов: Методические указания и контрольные задания для студентов-заочников механических, машиностроительных, автотранспортных специальностей. Издание третье [Текст] / Ю.Г. Барабаш; Алт. гос. техн. ун-т им. И.И. Ползунова — Барнаул: Типография АлтГТУ, 2014. — 62 с. Прямая ссылка: http://elib.altstu.ru/eum/download/prm/sopromat zaochn.pdf

6. Перечень учебной литературы

- 6.1. Основная литература
- 5. Сопротивление материалов [Электронный ресурс] / П. А. Павлов [и др.]; ред. Б. Е. Мельников. Изд. 5-е, испр. Электрон. текстовые дан. Санкт-Петербург [и др.] : Лань, 2019. 556 с. (Учебники для вузов. Специальная литература). Режим доступа: https://e.lanbook.com/reader/book/116013/#1
- 6. Филатов, Ю.Е. Введение в механику материалов и конструкций [Электронный ресурс] : учебное пособие / Ю.Е. Филатов. Электрон. дан. Санкт-Петербург : Лань, 2017. 320 с. Режим доступа: https://e.lanbook.com/book/93704. Загл. с экрана.

6.2. Дополнительная литература

- 7. Сборник задач по сопротивлению материалов [Электронный ресурс] : учебное пособие / Н.М. Беляев [и др.] ; под ред. Л. К. Паршина. Электрон. дан. Санкт-Петербург : Лань, 2017. 432 с. Режим доступа: https://e.lanbook.com/book/91908. Загл. с экрана.
- 8. Молотников, В.Я. Курс сопротивления материалов [Электронный ресурс] : учебное пособие / В.Я. Молотников. Электрон. дан. Санкт-Петербург : Лань, 2016. 384 с. Режим доступа: https://e.lanbook.com/book/71756. Загл. с экрана.
- 9. Кирсанов, М.Н. Марle и Maplet. Решения задач механики [Электронный ресурс] : учебное пособие / М.Н. Кирсанов. Электрон. дан. Санкт-Петербург : Лань, 2012. 512 с. Режим доступа: https://e.lanbook.com/book/3174. Загл. с экрана.

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

10. https://ssopromat.ru/sortament

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия

уровня подготовки по дисциплине требованиям $\Phi \Gamma O C$, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

Фонд оценочных материалов (ФОМ) по дисциплине представлен в приложении А.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационно-образовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение	
1	Windows	
2	LibreOffice	
3	Антивирус Kaspersky	

№пп	Используемые профессиональные базы данных и информационные		
	справочные системы		
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным		
	ресурсам" для студентов и преподавателей; каталог ссылок на образовательные		
	интернет-ресурсы (http://Window.edu.ru)		
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к		
	фондам российских библиотек. Содержит коллекции оцифрованных документов		
	(как открытого доступа, так и ограниченных авторским правом), а также каталог		
	изданий, хранящихся в библиотеках России. (http://нэб.рф/)		

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы				
учебные аудитории для проведения занятий лекционного типа				
учебные аудитории для проведения занятий семинарского типа				
учебные аудитории для проведения групповых и индивидуальных консультаций				
учебные аудитории для проведения текущего контроля и промежуточной аттестации				
помещения для самостоятельной работы				
лаборатории				

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».