АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ «Механика жидкости и газа»

по основной профессиональной образовательной программе по направлению подготовки 08.03.01 «Строительство» (уровень бакалавриата)

Направленность (профиль): Теплогазоснабжение и вентиляция

Общий объем дисциплины – 2 з.е. (72 часов)

Форма промежуточной аттестации – Зачет.

В результате освоения дисциплины обучающийся должен обладать следующими компетенциями:

- ОПК-1: способностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и математического (компьютерного) моделирования, теоретического и экспериментального исследования;
- ОПК-2: способностью выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлечь их для решения соответствующий физикоматематический аппарат;
- ПК-1: знанием нормативной базы в области инженерных изысканий, принципов проектирования зданий, сооружений, инженерных систем и оборудования, планировки и застройки населенных мест;

Содержание дисциплины:

Дисциплина «Механика жидкости и газа» включает в себя следующие разделы:

Форма обучения очная. Семестр 3.

- **1. Тема 1. Основные свойства жидкости.** Изучение структуры и основных физических свойств жидкостей с учётом основных законов естественно-научных дисциплин. Применение методов математического (компьютерного) моделирования для изучения моделей жидкой среды..
- **2. Тема 2. Основные уравнения и законы гидростатики.** Выявление естественнонаучной сущности проблем, возникающих в ходе изучения сил, действующих в жидкостях, привлечение для их решения соответствующего физико-математического аппарата. Гидростатическое давление и его свойства. Дифференциальное уравнение гидростатики. Поверхность уровня. Абсолютное равновесие жидкости. Основное уравнение гидростатики. Закон Паскаля. Относительное равновесие жидкости. Сила давления жидкости на плоскую поверхность. Центр давления. Сила давления жидкости на криволинейную поверхность.
- 3. Тема 3. Основы динамики жидкости. Изучение методов исследования движения жидкости с использованием основных законов естественно-научных дисциплин. Основные определения. Уравнение неразрывности (постоянства расхода). Средняя скорость потока. Уравнение Бернулли для элементарной струйки идеальной жидкости. Уравнение Бернулли для струйки и потока реальной жидкости. Основное уравнение установившегося равномерного движения жидкости. Режимы движения жидкости. Число Рейнольдса. Изучение основ теории гидродинамического подобия с использованием методов математического (компьютерного) моделирования. Критерии подобия.
- **4. Тема 4. Основы теории гидравлических сопротивлений.** Выявление естественнонаучной сущности проблем, возникающих при исследовании потерь напора по длине и на местных сопротивлениях, привлечение для их решения соответствующего физико-математического аппарата. Коэффициент гидравлического трения, его зависимость от условий течения. Коэффициент местного сопротивления.
- **5.** Тема **5.** Основы гидравлического расчета трубопроводов. Нормативная база при проектировании сооружений и инженерных систем.. Применение методов математического анализа и математического (компьютерного) моделирования, теоретического исследования для гидравлического расчёта различных схем соединения трубопроводов и гидравлического удара в трубопроводах. Нормативная база при проектировании сооружений и инженерных систем..

Разработал:

доцент кафедры ИСТиГ Проверил: Декан СТФ

С.Д. Ерёмин

И.В. Харламов