АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ «Вычислительная математика»

по основной профессиональной образовательной программе по направлению подготовки 09.03.04 «Программная инженерия» (уровень бакалавриата)

Направленность (профиль): Разработка программно-информационных систем **Общий объем дисциплины** – 5 з.е. (180 часов)

Форма промежуточной аттестации – Экзамен.

В результате освоения дисциплины обучающийся должен обладать следующими компетенциями:

- ОПК-1: владением основными концепциями, принципами, теориями и фактами, связанными с информатикой;
- ПК-13: готовностью к использованию методов и инструментальных средств исследования объектов профессиональной деятельности;
- ПК-20: способностью оценивать временную и емкостную сложность программного обеспечения:

Содержание дисциплины:

Дисциплина «Вычислительная математика» включает в себя следующие разделы:

Форма обучения очная. Семестр 6.

1. Введение. Основные теории, концепции, принципы и факты, связанные с информатикой: основы представления чисел в ЭВМ, причины возникновения вычислительных погрешностей, требования к вычислительным алгоритмам. Методы и инструментальные средства для разработки программных продуктов, как объектов профессиональной деятельности, реализующих вычислительные алгоритмы. Математическое моделирование и вычислительный эксперимент. Математические программные системы (SciLab, MathCad)*. Источники и классификация погрешностей. Особенности математических вычислений, реализуемых на ЭВМ: приближенные числа, действия с приближенными числами, машинная арифметика*.

Теоретические основы численных методов: погрешность вычисления функции, уменьшение погрешности вычислений*, устойчивость и сложность алгоритма (по памяти, по времени).

Основная часть вопросов, помеченных *), выносится на самостоятельное изучение..

2. Численные методы линейной алгебры. Прямые методы решения систем алгебраических уравнений. Метод Гаусса с выбором главного элемента. Вычисление определителя. Обращение матриц. Метод прогонки, его устойчивость. Метод квадратного корня. Обусловленность системы линейных алгебраических уравнений и оценка погрешности.

Итерационные методы решения систем алгебраических уравнений. Итерационные методы Якоби и Зейделя. Каноническая форма одношаговых итерационных методов, теорема о сходимости итерационного метода, выбор оптимального итерационного параметра*.

Нахождение собственных чисел матриц

Полная проблема собственных чисел, ее решение итерационным методом вращений для симметричных матриц. Решение частичной проблемы собственных чисел методом итераций. Оценка вычислительной и временной сложности численных методов.

3. Интерполяция и численное дифференцирование. Задача приближения функций. Интерполяционные формулы Лагранжа и Ньютона, их погрешность. Интерполяционные формулы для таблиц, составление таблиц. Многомерная интерполяция. Интерполяционный многочлен Эрмита. Интерполяция с помощью кубических сплайнов.

Наилучшее приближение в гильбертовом пространстве. Метод наименьших квадратов. Сглаживание экспериментальных данных.

Наилучшее равномерное приближение*. Полиномы Чебышева*. Уменьшение погрешности интерполяции многочленами Лагранжа*.

Дискретное преобразование Фурье*. Алгоритм быстрого преобразования Фурье*.

Применение интерполяционных формул для численного дифференцирования. Погрешность формул численного дифференцирования. Некорректность задачи численного дифференцирования.

4. Численное интегрирование. Получение простейших формул интегрирования (прямоугольников, трапеций, Симпсона), оценка их погрешности. Апостериорная оценка погрешности методом Рунге, автоматический выбор шага интегрирования.

Квадратурные формулы интерполяционного типа. Квадратурные формулы Гаусса.

Особые случаи интегрирования* (быстроосцилирующие функции, несобственные интегралы). Вычисление кратных интегралов. Метод Монте-Карло..

5. Решение нелинейных уравнений и систем. Отделение корней. Методы деления отрезка пополам, хорд, касательных, секущих, парабол для уточнения корней нелинейного уравнения.

Методы итераций, Ньютона, Якоби, Зейделя для нелинейных систем.

6. Обыкновенные дифференциальные уравнения. Классификация методов решения дифференциальных уравнений. Метод степенных рядов*.

Простейшие формулы и общая формулировка методов Рунге-Кутта. Оценка погрешности одношаговых методов. Контроль погрешности на шаге: метод Рунге; вложенные методы*. Автоматический выбор шага. Понятие об устойчивости и жестких системах. Многошаговые методы*, методы Адамса.

Метод стрельбы. Решение краевой задачи для линейного уравнения второго порядка разностным методом. Понятие о методе Галеркина и методе конечных элементов.

Решение интегральных уравнений..

Разработал:

доцент

кафедры ПМ С.А. Кантор

Проверил:

Декан ФИТ А.С. Авдеев