Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ФИТ А.С. Авдеев

Рабочая программа дисциплины

Код и наименование дисциплины: **Б1.В.ДВ.9.1** «Оптоинформатика»

Код и наименование направления подготовки (специальности): 12.03.01

Приборостроение

Направленность (профиль, специализация): **Измерительные информационные технологии**

Статус дисциплины: дисциплины (модули) по выбору

Форма обучения: заочная

Статус	Должность	И.О. Фамилия
Разработал	профессор	С.П. Пронин
	Зав. кафедрой «ИТ»	А.Г. Зрюмова
Согласовал	руководитель направленности (профиля) программы	А.Г. Зрюмова

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной

программы

Код	В результате изучения дисциплины обучающиеся должн			нающиеся должны:
компетенции из УП и этап её формирования	Содержание компетенции	знать	уметь	владеть
ОПК-3	способностью выявлять естественно-научную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения физикоматематический аппарат	Законы геометрической оптики, волновой оптики, физикоматематический аппарат при исследовании оптических сигналов и специальные математические функции в программной среде Mathcad	Выявлять естественнонаучну ю сущность проблем, привлекая для их решения математический аппарат и математические модели □при передаче и обработке оптических сигналов	Навыками применения физико- математического аппарата и математических моделей, возникающих в ходе профессиональной деятельности
ОПК-4	способностью учитывать современные тенденции развития техники и технологий в своей профессиональной деятельности	Современные тенденции развития техники и технологий в области оптоинформатики в России и за рубежом	Учитывать в своей профессиональной деятельности тенденции развития отечественной и зарубежной техники и технологий в области оптоинформатики	Навыками анализа и обобщения информации о современных тенденциях развития техники и технологий своей профессиональной деятельности
ПК-2	готовностью к математическому моделированию процессов и объектов приборостроения и их исследованию на базе стандартных пакетов автоматизированного проектирования и самостоятельно разработанных программных продуктов	Математический аппарат для моделирования процессов и объектов приборостроения в области оптоинформатики и их исследование на базе программного продукта Mathcad	Применять математический аппарат для моделирования процессов и объектов приборостроения в области оптоинформатики и создавать свои программные продукты	Навыками моделирования и исследования процессов и объектов приборостроения в области оптоинформатики на базе стандартного пакета Mathcad

2. Место дисциплины в структуре образовательной программы

Дисциплины	(практики),	Информатика, Математика, Физика, Физические
предшествующие изучению		основы получения информации
дисциплины,	результаты	
освоения которых	необходимы	
для освоения	данной	
дисциплины.		
Дисциплины (прав	ктики), для	Выпускная квалификационная работа
которых результаты освоения		

данной дисциплины будут необходимы, как входные знания, умения и владения для их изучения.

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 4 / 144 Форма промежуточной аттестации: Экзамен

	Виды занятий, их трудоемкость (час.)			Объем контактной	
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
заочная	6	6	0	132	17

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: заочная

Семестр: 7

Лекционные занятия (6ч.)

1. Передача и прием информации на основе фотонов. Современные тенденции развития техники и технологий в области волоконно-оптических систем передачи {беседа} (2ч.)[1,3,4,5] Классификация предмета «Оптоинформатика». Перспективы развития волоконно-оптических систем передачи, систем обработки информации, систем хранения и систем отображения информации.

Модель волоконно-оптической системы передачи. Оптическое волокно. Математическая модель передачи информации по оптическому волокну (Закон Снеллиуса). Основы передачи сигнала по оптическому волокну. Передатчики оптического сигнала. Оптические соединения: разветвитель, сплитер, комбайнер, регенератор. Современные тенденции развития техники и технологий.

Приемники оптического сигнала. Современные задачи измерений в волоконнооптических системах передачи (ВОСП): системные и эксплуатационные измерения. Моделирования и исследования процессов в области оптоинформатики.

2. Обработка информации на основе фотонов. Математический аппарат для

моделирования процессов и объектов в области оптоинформатики. {разработка проекта} (3ч.)[1,5,7] Введение в оптические процессоры. Оптический сигнал и математические формы его представления. Фурьепреобразование. Пример Фурье-преобразования. Таблица отдельных формул преобразования Фурье. Когерентный аналоговый процессор.

Свертка двух функций. Связь между входным и выходным сигналами линейной системы. Характеристика линейной системы: импульсная характеристика (функция рассеяния точки, функция Грина, аппаратная функция). Представление системы в частотной области: спектры сигналов, частотная характеристика, частотно-контрастная характеристика (ЧКХ) оптической системы.

Понятие фильтрации сигнала. Схема когерентной оптической системы пространственной фильтрации

3. Хранение и отображение информации на основе фотонов {беседа} (1ч.)[1,5] Носители оптической памяти: оптические диски, кристаллы. Оптическая память. Виды оптических дисков. Магнитооптическая память. Тенденции развития хранения информации: Объемная оптическая память. ЭЛТ- мониторы. ЖК-мониторы. Плазменные дисплеи. Явление электро-люминесценции. Светоизлучающие диоды. Светодиодные табло и дисплеи. ОLED — дисплеи. Дисплей с электронной эмиссией за счёт поверхностной проводимости (SED-дисплей). Лазерно-фосфорный дисплей (LPD-дисплей).

Лабораторные работы (6ч.)

1. Волоконно-оптический кабель {имитация} (2ч.)[1,3,4] Цель — Изучить волоконно-оптический кабель.

Задачи работы: формирование способности выявлять естественно-научную сущность проблем, возникающих в ходе профессиональной деятельности, привлекая для их решения физико-математический аппарат.

выполнить визуальный осмотр различных конструкций оптического кабеля и его структуры;

изучить формулу Снеллиуса как физические основы получения информации и получить инженерную формулу расчета критического угла падения, при котором световой луч остается в сердцевине оптического волокна;

исследовать в среде Mathcad диапазон изменения критического угла падения для ступенчатого волоконного световода с заданным показателем преломления сердцевины. Привести график зависимости изменения критического угла в градусной мере в зависимости от показателя преломления оболочки.

2. Измерение диаметра оптического волокна по дифракционной картине {имитация} (2ч.)[1] Цель — изучить дифракционный метод измерения диаметра оптического волок-на.

Задачи работы:

изучить структурную схему устройства измерения диаметра оптического волокна; с помощь лазерного источника света получить дифракционную картину от оптического волокна и сделать визуальную оценку структуры распределения

света на экране;

с помощью программного продукта Mathcad исследовать функцию дифракции от оптического волокна: написать программу и определить координаты и относительную интенсивность первого максимума; определить соотношение интенсивностей главного и первого максимума в дифракционной картине.

по теоретической формуле при заданном расстоянии между минимумами в дифракционной картине, заданном расстоянии между оптическим волокном и плоскостью измерения, заданной длине волны лазерного источника рассчитать диаметр оптического волокна.

3. Фурье-преобразование от гармонической функции в среде Mathcad {имитация} (2ч.)[1,7] Цель — исследовать изменения параметров в спектре цифровой гармонической функции от изменения ее периода при заданном времени наблюдения.

Задачи работы:

изучить формулу интеграла Фурье от непериодической функции и написать Фурье-преобразование от гармонической функции;

изучить основные команды для выполнения лабораторной работы в среде Mathcad;

разработать алгоритм и задать цифровой сигнал в виде гармонической функции и время наблюдения гармонической функции. Отразить на графике цифровую гармонику;

осуществить Фурье-преобразование цифровой гармоники и отразить ее на графике;

приготовить таблицу для записи экспериментальных исследований по за-данному образцу;

исследовать изменение параметров в спектре сигнала в зависимости от периода гармоники и интервала времени наблюдения гармоники;

определить условия возникновения утечки (растекания) спектра.

Самостоятельная работа (132ч.)

- 1. Выполнение контрольной работы(12ч.)[2,3,4,5,8,9,10] Обзор по системам передачи, обработки, хранения и отображения информации на основе фотонов.
- 2. Самостоятельное изучение литературы(99ч.)[1,2,3,4,5,6,7,8,9,10] Изучение теоретического учебного материала по заданным темам
- **3.** Подготовка к лекционным занятиям(6ч.)[1,3,4,5,7] Согласно темам лекционных занятий
- **4. Подготовка к лабораторным работам(6ч.)[1,6]** Согласно темам лабораторных работ
- **5.** Экзамен(9ч.)[1,3,4,5,7] Согласно заданным вопросам

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам: Лань, Университетская библиотека он-лайн, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

1. Электронный мультимедийный образовательный ресурс по дисциплине "Оптоинформатика"

Пронин С.П. (ИТ)

2015 Мультимедийный материал, 27.48 МБ

Дата первичного размещения: 30.10.2015. Обновлено: 08.04.2016.

Прямая ссылка: http://elib.altstu.ru/eum/download/it/optoinformatika.zip

2. Методические указания для выполнения контрольной работы по дисциплине "Оптоинформатика" для направления 12.03.01 "Приборостроение" заочной формы обучения

Пронин С.П. (ИТ)

2019 Методические указания, 664.00 КБ

Дата первичного размещения: 08.04.2019. Обновлено: 08.04.2019.

Прямая ссылка: http://elib.altstu.ru/eum/download/it/Pronin Optoinf KR mu.pdf

6. Перечень учебной литературы

- 6.1. Основная литература
- 3. Родина О.В. Волоконно-оптические линии связи. Практическое руководство. М.: Горячая линия Телеком, 2016. 400 с.— Электронная библиотечная система АлтГТУ, Доступ из ЭБС «Лань». https://e.lanbook.com/reader/book/111094/#2

6.2. Дополнительная литература

- 4. Семенов, А.Б. Волоконно-оптические подсистемы современных СКС [Электронный ресурс] / А.Б. Семенов. Электрон. дан. Москва : ДМК Пресс, 2009. 632 с. Режим доступа: https://e.lanbook.com/book/1144. Загл. с экрана.
- 5. Игнатов А.Н. Оптоэлектроника и нанофотоника: Учебное пособие. 2-е изд., перераб и доп. СПб.: Издательство «Лань», 2017.-596 с. .— Электронная биб-лиотечная система АлтГТУ, Доступ из ЭБС «Лань». https://e.lanbook.com/reader/book/95150/#4
- 6. Плещинская И.Е. Интерактивные системы Scilab, Matlab, Mathcad : учебное по-собие / И.Е. Плещинская [и др.]; М-во образ. И науки России, Казан. Нац. Ис-след. Технол. Ун-т. Казань: Изд-во КНИТУ, 2014. 195 с.— Электронная библиотечная система АлтГТУ, Доступ из ЭБС «Университетская

библиотека online».

http://biblioclub.ru/index.php?page=book view red&book id=428781

7. Дубнищев Ю.Н. Теория и преобразование сигналов в оптических системах: Учебное пособие. — 4-е изд., испр. и доп. — СПб.: Издательство «Лань», 2011. — 368 с. — Электронная библиотечная система АлтГТУ, Доступ из ЭБС «Лань». https://e.lanbook.com/reader/book/698/#2

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 8. https://www.tls-group.ru/services/sistemy-tsod/struktur-kab-sistem/vols/
- 9. https://skomplekt.com/solution/vols.htm/
- 10. https://skomplekt.com/technology/volokonno_opticheskie_sistemy_svyazi.htm/

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

Фонд оценочных материалов (Φ OM) по дисциплине представлен в приложении A.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационнообразовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение	
1	Mathcad 15	
2	Windows	
3	LibreOffice	
4	Антивирус Kaspersky	

№пп	Используемые профессиональные базы данных и информационные		
	справочные системы		
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным ресурсам" для студентов и преподавателей; каталог ссылок на образовательные интернет-ресурсы (http://Window.edu.ru)		
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к фондам российских библиотек. Содержит коллекции оцифрованных документов		

№пп	Используемые профессиональные базы данных и информационные	
	справочные системы	
	(как открытого доступа, так и ограниченных авторским правом), а также каталог	
	изданий, хранящихся в библиотеках России. (http://нэб.pф/)	

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы
учебные аудитории для проведения занятий лекционного типа
учебные аудитории для проведения групповых и индивидуальных консультаций
помещения для самостоятельной работы
лаборатории

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».