Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ФИТ А.С. Авдеев

Рабочая программа дисциплины

Код и наименование дисциплины: **Б1.Б.10** «Электроника и схемотехника»

Код и наименование направления подготовки (специальности): 16.03.01

Техническая физика

Направленность (профиль, специализация): Физико-химическое

материаловедение

Статус дисциплины: обязательная часть (базовая)

Форма обучения: очная

Статус	Должность	И.О. Фамилия
Разработал	старший преподаватель	В.С. Падалко
	Зав. кафедрой «ИТ»	А.Г. Зрюмова
Согласовал	руководитель направленности (профиля) программы	М.Д. Старостенков

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной

программы

програм	141D1				
Код		В результате изучения дисциплины обучающиеся должны:			
компетенции из УП и этап её формирования	Содержание компетенции	знать	уметь	владеть	
ОПК-3	способностью к теоретическим и экспериментальным исследованиям в избранной области технической физики, готовностью учитывать современные тенденции развития технической физики в своей профессиональной деятельности	знает основные законы электродинамики; тенденции развития технической физики в области электродинамики.	применять законы электродинамики при использовании и проектировании электроники и микропроцессорной техники.	методами и технологиями применения аналоговых и цифровых устройств в своей профессиональной деятельности.	
ОПК-8	способностью самостоятельно осваивать современную физическую, аналитическую и технологическую аппаратуру различного назначения и работать на ней	технологии самоорганизации и самообразования, позволяющие эффективно осваивать различную аппаратуру и оборудование.	организовать самостоятельное изучение современной физической, аналитической и технологической аппаратуры различного назначения и работать на ней.	технологиями самообразования, позволяющими осваивать современную физическую, аналитическую и технологическую аппаратуру различного назначения и работать на ней	
ПК-4	способностью применять эффективные методы исследования физикотехнических объектов, процессов и материалов, проводить стандартные и сертификационные испытания технологических процессов и изделий с использованием современных аналитических средств технической физики	методы исследования физико-технических объектов, процессов и материалов, проводить стандартные и сертификационные испытания технологических процессов и изделий с использованием современных аналитических средств технической физики	на практике применять эффективные методы исследования физико-технических объектов, процессов и материалов, проводить стандартные и сертификационные испытания технологических процессов и изделий с использованием современных аналитических средств технической физики	технологиями и методами исследования физико-технических объектов, процессов и материалов, проводить стандартные и сертификационные испытания технологических процессов и изделий с использованием современных аналитических средств технической физики	
ПК-7	способностью проводить инструктаж и обучение младшего технического персонала правилам применения современных	правила применения современных наукоемких аналитических и технологических	применять правила применения современных наукоемких аналитических и	аналитическими и технологическими средствами технической физики	

Код		В результате изучения дисциплины обучающиеся должны:			
компетенции из УП и этап её	Содержание компетенции	знать	уметь	владеть	
формирования					
	наукоемких аналитических и технологических средств технической физики	средств технической физики	технологических средств технической физики		

2. Место дисциплины в структуре образовательной программы

Дисциплины (практики), предшествующие изучению	Введение в физику, Информационные технологии, Новые материалы и технологии, Физика
дисциплины, результаты освоения которых необходимы для освоения данной дисциплины.	
Дисциплины (практики), для которых результаты освоения данной дисциплины будут необходимы, как входные знания, умения и владения для их изучения.	включая подготовку к процедуре защиты и процедуру защиты, Методы контроля качества материалов, Научно-исследовательская работа

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 8 / 288

Γ	Виды занятий, их трудоемкость (час.)					Объем контактной
	Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
	очная	51	68	0	169	139

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: очная

Семестр: 3

Объем дисциплины в семестре з.е. /час: 5 / 180 Форма промежуточной аттестации: Экзамен

Виды занятий, их трудоемкость (час.)				Объем контактной работы
Лекции	Лекции Лабораторные Практические Самостоятельная работы занятия работа			обучающегося с преподавателем (час)
34	34	0	112	79

Лекционные занятия (34ч.)

1. Введение в дисциплин. Теоретические и экспериментальные исследования в области технической физики, способствующие развитию современной электроники и схемотехники. {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5,6,7,8,9,10] Цели и задачи дисциплины, виды и объем учебной нагрузки, основные термины и определения,

краткая история развития электронной и интегральной схемотехники

2. Полупроводниковые диоды. {лекция с разбором конкретных ситуаций} (4ч.)[3,4,5,6,7,8,9,10] Современная элементная база электроники, как способ развития физической, аналитической аппаратуры различного назначения. Элементная база электроники. Свойства полупроводников. Основные сведения об электронно-дырочном переходе.

Классификация диодов. Универсальные диоды, стабилитроны, туннельные и обращенные диоды, диоды Шотки, варикапы и светодиоды. Принцип действия, основные

параметры и характеристики.

3. Транзисторы {лекция с разбором конкретных ситуаций} (4ч.)[3,4,5,6,7,8,9,10] Устройство биполярного и полевого транзисторов, их разновидности и обозначения

на электрических принципиальных схемах. Модели транзисторов.

Основные параметры транзисторов, схемы включения и замещения. Семейства вольтамперных характеристик транзисторов. Другие виды транзисторов.

4. Тиристоры {лекция с разбором конкретных ситуаций} (4ч.)[3,4,5,6,7,8,9,10] Устройство и принцип действия тиристора и симистора. Семейства вольтамперных

характеристик. Разновидности тиристоров и симисторов. Условные обозначения на схемах.

- Фотоприборы 5. {лекция c разбором конкретных ситуаций} физико-технических объектов, (44.)[3,4,5,6,7,8,9,10]Методы исследования процессов и материалов для задач электроники на примере фотоэффекта. Принцип фотоэффекта. Фоторезисторы, фотодиоды, фототранзисторы и Оптоэлектронные фототиристоры. приборы. Основные технические характеристики.
- **6. Интегральные микросхемы {лекция с разбором конкретных ситуаций} (4ч.)[3,4,5,6,7,8,9,10]** Применение современных наукоемких аналитических и технологических средств технической физики для развития микроэлектроники. Классификация микросхем. Аналоговые, цифровые и гибридные микросхемы.

Основные функциональные устройства, реализуемые на микросхемах. Обозначения микросхем на электрических принципиальных схемах.

7. Усилители переменного и постоянного тока {лекция с разбором конкретных ситуаций} (4ч.)[3,4,5,6,7,8,9,10] Принцип действия, классификация. Усилительные каскады, режимы работы. Методы

расчета усилительных каскадов на транзисторах. Способы температурной стабилизации

рабочей точки. Особенности построения схем усиления постоянного тока (УПТ). Дрейф нуля

в УПТ. Балансная схема. Частотные и переходные характеристики Обратные связи в

усилителях. Многокаскадные усилители. Классы усиления усилителей (A, AB, B, C и D).

Операционные усилители (ОУ) на микросхемах. Идеальные и реальные ОУ. Схемы

инвертора, сумматора, интегратора, дифференциатора и др. на ОУ. Активные фильтр, схемы

балансировки, частотной коррекции ОУ.

Усилители мощности на микросхемах. Методика выбора типов микросхем из каталогов.

8. Цифровые функциональные устройства на микросхемах {лекция с разбором конкретных ситуаций} (4ч.)[3,4,5,6,7,8,9,10] Логические элементы, триггеры, регистры, счетчики, дешифраторы, шифраторы,

сумматоры и т.д. Таблицы истинности, переходов, временные диаграммы работы. Элементы

алгебры логики для проектирования цифровых схем.

9. Вторичные источники питания {лекция с разбором конкретных ситуаций} (4ч.)[3,4,5,6,7,8,9,10] Назначение и технические характеристики источников напряжения. Аналоговые и

импульсные источники напряжения. Методика выбора или расчета параметров источников

вторичного питания. Источники тока. Заключение.

Лабораторные работы (34ч.)

- 1. Подбор компонентов трансформаторного блока питания(8ч.)[1,3,4,5,6,7,8,9,10] Цель работы Подобрать компоненты для трансформаторного блока питания. Задачи:
- 1) □Выбрать вариант задания;
- 2) □Определить параметры блока питания согласно варианту: выходное напряжение, максимальный выходной ток, уровень пульсаций напряжения;
- 3) Подобрать диоды для диодного моста или диодный мост способные обеспечить работу блока питания на требуемой мощности. Рассчитать падение напряжения в диодном мосту;

4) □Подобрать трансформатор с требуемыми выходными характеристиками;
5) Рассчитать ёмкость сглаживающего конденсатора необходимую для
обеспечения требуемого уровня пульсаций. Подобрать конденсатор.
6) Сформировать таблицу с подобранными компонентами;
7) Написать и защитить отчет о проделанной работе.
2. Расчет предела количества кнопок клавиатуры на основе резистивного
делителя(8ч.) [1,3,4,5,6,7,8,9,10] Цель работы — Рассчитать максимально
возможное количество кнопок, которое может содержать клавиатура на основе
резистивного делителя.
Задачи:
1) Пизучить принцип работы клавиатуры;
2) □Ознакомиться с рядами номиналов радиодеталей Е6, Е12, Е24;
3) □Ознакомиться с понятие ТКС;
4) Рассчитать максимально возможное количество кнопок, которое может
содержать клавиатура на основе резистивного делителя, для заданного
температурного диапазона.
5) Сформировать таблицу с подобранными компонентами;
6)□Написать и защитить отчет о проделанной работе.
3. Расчет параметрического стабилизатора напряжения(9ч.)[1,3,4,5,6,7,8,9,10]
Цель работы – Рассчитать параметры компонентов параметрического
стабилизатора напряжения с эмиттерным повторителем. Задачи:
1) Ознакомиться с методикой расчёта параметрического стабилизатора
напряжения с эмиттерным повторителем;
2) □Выбрать вариант задания;
3) Рассчитать параметры компонентов параметрического стабилизатора
напряжения с эмиттерным повторителем согласно варианту;
4) □Подобрать компоненты;
5) Сформировать таблицу с подобранными компонентами;
6) □ Написать и защитить отчет о проделанной работе.
4. Расчет и подбор компонентов графического анализатора
спектра(9ч.)[1,3,4,5,6,7,8,9,10] Цель работы – Рассчитать и подобрать
компоненты графического анализатора спектра.
Задачи:
1) □Ознакомиться с принципиальной схемой графического анализатора спектра,
понять принцип её работы;
2) □ Рассчитать параметры компонентов схемы;
3) □Подобрать компоненты;
4) □ Сформировать таблицу с подобранными компонентами;
5)□Написать и защитить отчет о проделанной работе.

Самостоятельная работа (112ч.)

- **1. Проработка теоретического материала(34ч.)[3,4,5,6,7,8,9,10]** Работа с конспектами лекций, рекомендованной литературой
- **2.** Подготовка к лабораторным занятиям(34ч.)[1,3,4,5,6,7,8,9,10] Подготовка отчета по лабораторным работам, изучение справочно-методического материала по теме лабораторной работы
- **3.** Подготовка к контрольным работам(8ч.)[1,3,4,5,6,7,8,9,10] Подготовка к двум контрольным работам для контроля текущих знаний по дисциплине
- **4.** Экзамен(36ч.)[1,3,4,5,6,7,8,9,10] Подготовка к промежуточной аттестации по лисциплине

Семестр: 4

Объем дисциплины в семестре з.е. /час: 3 / 108

Форма промежуточной аттестации: Зачет

Виды занятий, их трудоемкость (час.)				Объем контактной работы
Лекции Лабораторные Практические Самостоятельная работы занятия работа		обучающегося с преподавателем (час)		
17	34	0	57	60

Лекционные занятия (17ч.)

1. Базовые конфигурации микросхем {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5,6,7,8,9,10] Применение современных наукоемких аналитических и технологических средств технической физики для задач схемотехники на примере построения схем конфигурации аналоговых микросхем. Базовые схемные конфигурации аналоговых микросхем. Базовые схемные конфигурации

цифровых микросхем. ТТЛ с простым и сложным инвертором. Особенности построения

и виды интегральных усилителей.

2. Усилители сигналов на полупроводниковых компонентах {лекция с разбором конкретных ситуаций (3ч.)[3,4,5,6,7,8,9,10] Усилители сигналов на полупроводниковых компонентах. Классификация усилителей, основные параметры и характеристики Эквивалентные схемы усилителей. Активный четырехполюсник. Обратная связь и её влияние на показатели и характеристики аналоговых устройств. Положительная и отрицательная обратная связь в усилителях сигналов. Петлевое усиление и глубина обратной связи. Устойчивость усилителей с ОС. Частотнозависимая ОС и АЧХ усилителей с ОС. Статический режим работы усилительных каскадов на транзисторах. Расчет режима работы транзистора по постоянному току. Режимы класса А, В, С, Д. Линия нагрузки. Выбор рабочей точки. Способы включения транзисторов в усилительных каскадах и особенности их расчета по постоянному току. Термостабилизация Схемы подачи напряжения смещения Усилительный каскад. Дифференциальные усилители постоянного тока.

Схемотехника усилителей с непосредственными связями. Усилители низкой частоты, коэффициент усиления, АЧХ, основные схемы построения. Резонансные усилители. Мощные усилительные каскады. Особенности схемотехники многокаскадных усилителей в интегральном исполнении.

- **3.** Операционные усилители (ОУ) и их применение. {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5,6,7,8,9,10] Основные виды ОУ, их параметры и характеристики. Основы схемотехники, частотная коррекция, защита от перегрузок. ОУ охваченные обратной связью, погрешность и стабильность коэффициента усиления. Частотная и переходная характеристики. Основные схемы применения ОУ.
- **4. Компараторы напряжения.** {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5,6,7,8,9,10] Характеристики компараторов. Компараторы с положительной обратной связью. Схемотехника компараторов. Динамические характеристики компаратора.
- **5. Активные RC фильтры.** {**лекция с разбором конкретных ситуаций**} **(2ч.)[3,4,5,6,7,8,9,10]** Передаточная функция, методы аппроксимации. Методы расчета активных RC фильтров HЧ, ВЧ, ППФ, ПЗФ. Активные фильтры с переключаемыми конденсаторами.
- **6.** Генераторы электрических сигналов. {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5,6,7,8,9,10] Генераторы синусоидальных колебаний. Основные принципы генерации. Обратная связь. RC генераторы на транзисторах и на ОУ. Стабилизация частоты. Генераторы прямоугольных импульсов. Блокинг генераторы. Генераторы линейно изменяющегося напряжения и тока.
- 7. Электронные ключи. {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5,6,7,8,9,10] Общие сведения об импульсных процессах и устройствах. Цифровые и аналоговые электронные ключи. Принцип действия, схемотехника и основные параметры. Статические и динамические характеристики ключей на транзисторах. Мощные быстродействующие ключи на составных транзисторах.
- 8. Цифровая электроника. {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5,6,7,8,9,10] Применение методов исследования физико-технических объектов, процессов и материалов для задач цифровой электроники. Основы импульсной и цифровой схемотехники. Логические элементы (ЛЭ). Интегральные схемы со структурами комбинационного типа. Триггеры, их классификация и основные схемные решения на транзисторах. Счетчики, регистры, элементы памяти. Таблицы состояний и прикладные уравнения. Примеры построения счетчиков, сдвиговых регистров, запоминающих устройств. Микропроцессорные комплексы и устройства. Основные характеристики и классификация микропроцессоров. Основы архитектуры микропроцессорных устройств.

Лабораторные работы (34ч.)

1. САПР DeepTrace модуль Schematic(8ч.)[2,3,4,5,6,7,8,9,10] Цель работы – Освоить возможности модуля SchematicCAПР DeepTrace. Задачи:

1) Пзучить функциональные возможности модуля SchematicCAПР DeepTrace:
Поиск компонентов;
Структура стандартных библиотек компонентов;
Механизм размещения и соединения компонентов в области рабочего поля;
Типы соединяющих линий: одиночный проводник, шина;
Установка имени и метки компонента.
2) Составить принципиальную схему устройства, рассчитанного в 4-й
лабораторной первого семестра.
3) □ Написать и защитить отчет о проделанной работе.
2. САПР DeepTrace модуль РСВ(8ч.)[2,3,4,5,6,7,8,9,10] Цель работы – Освоить
возможности модуля PCBCAПР DeepTrace.
Задачи:
1) □Изучить функциональные возможности модуля PCBCAПР DeepTrace:
Инструменты формирования сигнальных дорожек;
Инструменты формирования маркировки;
Настройка правил проверки печатной платы на правильность взаимного расположения проводников.
•
2) □ Разработать печатную плату согласно схемы составленной в работе №1.
3) □ Написать и защитить отчет о проделанной работе.
3. Разработка схемы блока питания(9ч.)[2,3,4,5,6,7,8,9,10] Цель работы -
Разработать схему трансформаторного блока питания со стабилизацией.
Задачи:
1) Пзучитьфункциональныевозможностимодулей Component Editoru Pattern
EditorCAПPDeepTrace: Инструменты формирования УГО;
Инструменты формирования корпуса для модуля РСВ;
Привязка корпуса модуля РСВ к 3D модели.
2) □ Разработать схему блока питания, рассчитанного в работах 1 и 3 первого
семемстра.
3) □ Написать и защитить отчет о проделанной работе.
4. Разработка печатной платы блока питания(9ч.)[2,3,4,5,6,7,8,9,10] Цель
работы – Освоить инструментарий формирования 3D модели печатной платы.
Задачи:
1) Пзучить функциональные возможности модуля PatternEditorCAПPDeepTrace
связанных с добавлением 3D моделей к корпусам PCB
2) □ Разработать печатную плату согласно схемы составленной в работе №3.
3) □ Написать и защитить отчет о проделанной работе.

Самостоятельная работа (57ч.)

1. Проработка теоретического материала(15ч.)[3,4,5,6,7,8,9,10] Работа с конспектом лекций и рекомендованной литературой

- **2. Подготовка к лабораторным работам(34ч.)[2,3,4,5,6,7,8,9,10]** Подготовка отчета и изучение справочно-методического материала по теме работы
- **3.** Подготовка к контрольным работам(4ч.)[2,3,4,5,6,7,8,9,10] Изучение теоретического и практического материала.
- **4. Подготовка к зачёту, сдача зачёта(4ч.)[2,3,4,5,6,7,8,9,10]** Подготовка к зачету

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам: Лань, Университетская библиотека он-лайн, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

- 1. Падалко В.С. Методические указания по выполнению лабораторных работ по дисциплине «Электроника и схемотехника» Часть 1 [Электронный ресурс]: Методические указания.— Электрон. дан.— Барнаул: АлтГТУ, 2021.— Режим доступа: http://elib.altstu.ru/eum/download/it/uploads/padalko-v-s-it-6062a68d573ea.pdf, авторизованный
- 2. Падалко В.С. Методические указания по выполнению лабораторных работ по дисциплине «Электроника и схемотехника» Часть 2 [Электронный ресурс]: Методические указания.— Электрон. дан.— Барнаул: АлтГТУ, 2021.— Режим доступа: http://elib.altstu.ru/eum/download/it/uploads/padalko-v-s-it-6062a6d3f10a2.pdf, авторизованный

6. Перечень учебной литературы

- 6.1. Основная литература
- 3. Белов, Н.В. Электротехника и основы электроники [Электронный ресурс] : учебное пособие / Н.В. Белов, Ю.С. Волков. Электрон. дан. Санкт-Петербург : Лань, 2012. 432 с. Режим доступа: https://e.lanbook.com/book/3553. Загл. с экрана.

6.2. Дополнительная литература

- 4. Легостаев, Н.С. Материалы электронной техники: учебное пособие / Н.С. Легостаев, К.В. Четвергов; Министерство образования и науки Российской Федерации, Томский Государственный Университет Систем Управления и Радиоэлектроники (ТУСУР), Кафедра промышленной электроники. Томск: Томский государственный университет систем управления и радиоэлектроники, 2014. 230 с.: схем., табл., ил.; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=480509 (11.03.2019).
- 5. Ефимов, И.Е. Основы микроэлектроники [Электронный ресурс] : учебник / И.Е. Ефимов, И.Я. Козырь. Электрон. дан. Санкт-Петербург : Лань, 2008. 384 с. Режим доступа: https://e.lanbook.com/book/709. Загл. с экрана.

6. Гусев В.Г. Электроника и микропроцессорная техника: учеб. пособие для вузов / В.Г. Гусев, М.Ю. Гусев. — 5-е изд., стер. — М.: Высш. шк., 2008. 798 с. -25 экз.

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 7. http://www.radio-portal.ru
- 8. http://www.radiomaster.net/
- 9. http://affon.narod.ru/
- 10. http://microcon.euro.ru/

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

Фонд оценочных материалов (ФОМ) по дисциплине представлен в приложении А.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационнообразовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение
1	Chrome
2	Micro-Cap
3	Microsoft Office
4	LibreOffice
5	Mozilla Firefox
6	Антивирус Kaspersky
7	Windows

№пп	Используемые профессиональные базы данных и информационные		
	справочные системы		
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным ресурсам" для студентов и преподавателей; каталог ссылок на образовательные интернет-ресурсы (http://Window.edu.ru)		
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к		

№пп	Используемые профессиональные базы данных и информационные		
	справочные системы		
	фондам российских библиотек. Содержит коллекции оцифрованных документов (как открытого доступа, так и ограниченных авторским правом), а также каталог		
	изданий, хранящихся в библиотеках России. (http://нэб.рф/)		

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы
учебные аудитории для проведения занятий лекционного типа
учебные аудитории для проведения групповых и индивидуальных консультаций
учебные аудитории для проведения текущего контроля и промежуточной аттестации
помещения для самостоятельной работы
лаборатории

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».