Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ФИТ А.С. Авдеев

Рабочая программа дисциплины

Код и наименование дисциплины: Б1.Б.10 «Электротехника и электроника»

Код и наименование направления подготовки (специальности): **09.03.01 Информатика и вычислительная техника**

Направленность (профиль, специализация): **Программно-техническое обеспечение автоматизированных систем**

Статус дисциплины: обязательная часть (базовая)

Форма обучения: очная

Статус	Должность	И.О. Фамилия
Разработал	заведующий кафедрой	А.Г. Якунин
	Зав. кафедрой «ИВТиИБ»	А.Г. Якунин
Согласовал	руководитель направленности (профиля) программы	Л.И. Сучкова

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной

программы

Код		В результате изучения дисциплины обучающиеся должны:		
компетенции из УП и этап её формирования	Содержание компетенции	знать	уметь	владеть
ОПК-2	способностью осваивать методики использования программных средств для решения практических задач	1. основные программные средства, применяемые для решения различных прикладных задач и технологии их использования, в том числе для расчета электрических цепей 2. методики использования программных средств для анализа и синтеза объектов профессиональной деятельности, в том числе для анализа и синтеза электрических цепей и электронных схем	выбирать и применять программные средства для решения практических задач по моделированию и расчету электрических схем в инструментальных программных средах	Технологиями использования программных средств для решения практических задач по расчету электрических схем и моделированию их работы
ОПК-4	способностью участвовать в настройке и наладке программно- аппаратных комплексов	1. Принципы работы и основные характеристики, компонентов программно-аппаратных комплексов, в том числе: - физические законы и явления, лежащие в основе работы электронных приборов; - номенклатуру современной компонентной базы электроники; - параметры и характеристики используемых в схемотехнике в вычислительной технике полупроводниковых приборов и области их применения в решении технических задач - принципы работы,	Оценивать работоспособность программно-аппаратных комплексов и их компонентов, в том числе - проводить исследования радиоэлектронных устройств и их компонентов с целью определения их параметров, характеристик и работоспособности; - находить и исправлять простейшие неисправности в электрических цепях;	Навыками оценки работоспособности программного и/или аппаратного обеспечения в процессе настройки и наладки, в том числе навыками постановки и проведения простейших вычислительных и натурных экспериментов с исследуемыми электронными компонентами и схемами и анализа их результатов

Код		В результате изучения дисциплины обучающиеся должны:			
компетенции из УП и этап её формирования	Содержание компетенции	знать	уметь	владеть	
формирования		сравнительные			
		свойства и			
		перспективы			
		совершенствования			
		современных			
		элементов средств			
		вычислительной			
		техники и			
		автоматизированных			
		систем			
		2. Методы расчета и			
		проектирования			
		компонентов			
		программно-			
		аппаратных			
		комплексов, в том			
		числе:			
		- основные методы			
		расчета			
		электрических цепей:			
		постоянного и переменного тока,			
		линейных и			
		нелинейных,			
		синусоидальных и			
		несинусоидальных,			
		однофазных и			
		трехфазных;			
		- базовые методы			
		расчета магнитных			
		цепей;			
		- способы анализа и			
		синтеза простейших			
		электронных схем			
		- методы на основе			
		моделирования			
		электронных схем в			
		инструментальных			
		программных средах			

2. Место дисциплины в структуре образовательной программы

Дисциплины (практики), предшествующие изучению дисциплины, результаты освоения которых необходимы для освоения данной дисциплины.	Введение в математику, Введение в физику, Информатика, Математика, Программные пакеты для математических расчетов, Физика
Дисциплины (практики), для которых результаты освоения данной дисциплины будут	Защита информации, Информационно-измерительные и управляющие системы, Микропроцессорные системы, Основы научных исследований, Основы обработки сигналов, Основы радиотехники, Практика

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 7 / 252

	Виды занятий, их трудоемкость (час.)				Объем контактной
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
очная	51	68	17	116	145

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: очная

Семестр: 3

Объем дисциплины в семестре з.е. /час: 3.25 / 120

Форма промежуточной аттестации: Экзамен

Виды занятий, их трудоемкость (час.)			Объем контактной работы	
Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	обучающегося с преподавателем (час)
17	34	17	52	72

Лекционные занятия (17ч.)

1. Лекция **1.** Вводное занятие {беседа} (2ч.)[4,5,8,10,12,13,14,15,18,19,20,21] 1.Введение.

Общее представление об электротехнике. Основные задачи дисциплины и ее взаимосвязь с другими дисциплинами. Области практического применения полученных знаний и навыков. Структура курса и его связь с другими дисциплинами. Требования к зачету и уровню усвоения материала. (0.1 часа)

2. Источники электроэнергии.

Пассивные и активные элементы электрических цепей и их параметры. Понятие вольтамперной характеристики (BAX). BAX реальных и идеальных источников тока и напряжения и их эквивалентные схемы. Взаимные преобразования источников тока и напряжения. (0.4 часа)

3. Основы измерений электрических величин.

Основные типы электроизмерительных приборов. Измерение тока, напряжения, мощности. Требования к вольтметру и амперметру. Виды погрешностей измерения. Влияние параметров измерительных устройств на точность измерения. Электронные осциллографы: назначение, разновидности, принцип работы. Фигуры Лиссажу. Краткое содержание первой и второй лабораторных работ. (1час)

- 4. Применение программных средств для синтеза и анализа электрических цепей. Основные характеристики симуляторов электронных устройств и методики работы с ними для решения задач анализа и синтеза электрических схем. Понятие Spice моделей. Программное обеспечение для моделирования схем фирм National instruments (Multisim), Spectrum Software (Micro-Cap). Свободно распространяемые интернет-сервисы для моделирования электрических схем. (0.5 часа)
- **2.** Лекция **2.** Электрические цепи постоянного тока. {беседа} (2ч.)[5,12,13] Основные понятия теории электрических цепей: контур, ветвь, узел. Независимые контуры. Основные свойства и законы линейных цепей. Потенциальная диаграмма. Баланс мощности в электрических цепях. Классификация методов расчета линейных электрических цепей
- **3.** Лекция **3.** Методы расчета электрических цепей {беседа} (2ч.)[5,12,13] 1. Базовые методы расчета электрических цепей.

Законы Кирхгофа. Метод контурных токов. Метод узловых потенциалов (напряжений). Эквивалентные преобразования электрических цепей. Разрешение неопределенностей при расчетах базовыми методами с применением эквивалентных преобразований (1 час)

- 2. Специальные частные методы расчета электрических цепей. Методы наложения, эквивалентного генератора, эквивалентных преобразований, двух узлов, пропорциональных величин. Краткое содержание лабораторной работы 3 (1 час)
- 4. Лекция 4. Электрические однофазные цепи переменного тока(2ч.)[5,12,13] Основные понятия электрических цепей переменного тока. Векторная и комплексная формы представления синусоидальных напряжений. Векторная и топографическая диаграммы. Активные и реактивные компоненты электрических цепей. Комплексный метод расчета цепей переменного тока. Простейшие векторные диаграммы RC и RL цепей. Преобразование энергии в цепях переменного тока. Активная, реактивная, полная и мгновенная мощности. Коэффициент мощности. Резонансы в цепях переменного тока. Последовательный и параллельный резонанс. Взаимная индуктивность. Цепи с индуктивно связанными элементами и матричные методы их расчета.

Электрические трансформаторы. Краткое содержание лабораторной работы 4

- **5.** Лекция **5.** Электрические машины, трехфазные цепи и цепи несинусоидального тока {беседа} (2ч.)[5,12,13] 1. Электрические цепи трехфазного синусоидального тока. Трехфазные цепи. Основные понятия и определения. Линейные и фазные токи и напряжения. Схемы включения звездой и треугольником. Особенности расчета мощности в трехфазных цепях. Определитель порядка следования фаз. (1 час)
- 2. Электрические цепи с несинусоидальными источниками и методы их расчета. Общее представление о несинусоидальных источниках тока и напряжения. Спектральное разложение источников. Ряд Фурье и его применение для расчета несинусоидальных электрических цепей. Дискретный спектр. Преобразование Фурье. Спектральный анализ сигналов. Апериодические сигналы и их спектры. Методика расчета несинусоидальных цепей. Расчет мощности в нелинейных электрических цепях. Характеристики несинусоидальных величин (0.5 часа)
- 3. Электрические машины. Классификация электрических машин и их основные характеристики и параметры. Общие принципы работы машин постоянного тока и асинхронных двигателей. . Механическая характеристика. Коэффициент скольжения.

Краткое содержание лабораторной работы 5 (0.5 часа)

- 6. Лекция 6. Нелинейные электрические цепи(2ч.)[5,12,13] Понятие нелинейной цепи. Вольтамперные характеристики участков цепей. Элементы с электрическим гистерезисом. Статическое и динамическое сопротивление. Методы расчета нелинейных цепей. Графические методы расчета нелинейных электрических цепей: последовательное, параллельное и смешанное соединение элементов. Расчет нелинейных цепей методом двух узлов и эквивалентного генератора. Метод линеаризации и итерационные методы расчета. Краткое содержание лабораторной работы 6.
- **7. Лекция 7. Переходные процессы {беседа} (2ч.)[5,12,13]** 1. Переходные процессы в электрических цепях.

Общее представление о переходных процессах, их разновидности и причины возникновения. Быстрые переходные процессы. Законы коммутации. Принужденный и свободный режим. Общий подход к расчету переходных процессов.

- 2. Методы расчета переходных процессов в электрических цепях.
- Краткая характеристика методов расчета переходных процессов. Классический метод расчета. Переходные процессы в цепях г,L,С. Особенности расчета переходных процессов в цепях переменного тока. Применение преобразований Лапласа к расчету переходных процессов. Операторный метод расчета переходных процессов. Формула разложения. Расчет с применением интеграла Дюамеля и его вариаций. Применение преобразования Фурье к расчету переходных процессов. Общее представление о применении метода пространства состояний для расчета переходных процессов.
- 3. Краткое содержание лабораторной работы 7
- 8. Лекция 8. Магнитные цепи и длины линии {беседа} (3ч.)[5,8,12,13] 1.

Магнитные цепи и основы теории электромагнитного поля.

Основные понятия и уравнения теории электромагнитного поля.

- 2. Магнитные цепи и методы их расчета. Связь методов расчета магнитных цепей с методами расчета цепей постоянного тока. (0,5 часа).
- 3. Длинные линии Понятие длинной линии. Стоячие волны. Основные характеристики длинных линий. Волновое сопротивление. Основные методы расчета длинных линий. Особенности протекания переходных процессов в длинных линиях. Особенности расчета переходных процессов в длинных линиях. (0,5 часа).

Практические занятия (17ч.)

1. Разбор решения задач по лабораторным работам {мини-лекция} (16ч.)[1,5,7,12] Занятие 1. Источники тока и напряжения. Электрические измерения: расчет погрешностей измерения токов и напряжений из-за не идеальности электроизмерительных приборов. Нахождение токов и напряжений в простейших электрических цепях. Построение потенциальных диаграмм и фигур Лиссажу (2 часа).

Занятие 2. Расчет цепей постоянного тока по законам Кирхгофа и методом контурных токов (2 часа).

Занятие 3. Расчет цепей постоянного тока методом узловых потенциалов и специальными ме-тодами (2 часа).

Занятие 4. Расчет цепей однофазного переменного тока. Построение топографических и век-торных диаграмм (2 часа).

Занятие 5. Расчет цепей трехфазного тока при симметричной и несимметричной нагрузке (2 часа).

Занятие 6. Расчет нелинейных электрических цепей (2 часа).

Занятие 7. Расчет переходных процессов (2 часа).

Занятие 8. Расчет магнитных цепей (2 часа).

2. Контрольная работа(1ч.)[12] Итоговая контрольная работа в форме тестов. Продолжительность - 20...25 минут. Предварительно - правила прохождения тестовых заданий, советы по вычислениям, ответы на вопросы студентов

Лабораторные работы (34ч.)

- 1. Вводное занятие {мини-лекция} (1ч.)[1] Знакомство с лабораторным стендом в части работ по электротехнике. Изучение и сдача правил техники безопасности. Формулирование основной цели лабораторных работ, выполняемых на реальном оборудовании как развитие навыков сборки и монтажа электрических схем, оценки их работоспособности, а также навыков обнаружения простейших неисправностей, настройки и наладки электрических схем, постановки и проведения простейших вычислительных и натурных экспериментов с исследуемыми электронными компонентами и схемами
- 2. Работа №1. Электроизмерительные приборы {работа в малых группах}

- (6ч.)[1,4] Изучение цены деления аналоговых шкал. Влияние параметров прибора на методическую погрешность измерения токов и напряжений. Классификация электроизмерительных устройств. Основные виды и характеристики промышленных стрелочных и цифровых приборов. Измерение напряжений на участках цепи. Измерение активных сопротивлений. Определение цены деления осциллографа по времени и амплитуде. Понятие о синхронизации, электронной лупе времени. Представление о z-входе и фигурах Лиссажу. Измерение осциллографом частоты, амплитуды и фазовых сдвигов колебаний различной формы (гармонической, прямоугольной, треугольной). Оценка погрешности измерения частоты и напряжения.
- 3. Работа №2. Определение внутренних сопротивлений источников тока, напряжения и электроизмерительных приборов. Использование симуляторов для анализа работы электрических схем {творческое задание} (5ч.)[1,18,19,20,21] Определение внутренних сопротивлений источников тока и напряжения, вольтметра и миллиамперметра. Оценка погрешностей измерения токов и напряжений электроизмерительными приборами. Исследование вольтамперных характеристик источников тока и оценка погрешностей измерения на симуляторах электрических схем
- **4. Работа №3. Исследование цепей постоянного тока(4ч.)[1,5,12,13]** Сложная цепь. Закон Кирхгофа. Метод контурных токов. Метод узловых потенциалов. Применение других методов для расчета электрических цепей.
- **5.** Работа №4. Исследование цепей однофазного переменного тока {творческое задание} (4ч.)[1,5,12,13] Определение параметров катушек резонансными методами. Параллельный и последовательный резонансы. Расчет разветвленных цепей, содержащих R, L и C элементы
- **6. Работа №5. Исследование трехфазных и нелинейных электрических цепей(4ч.)[1,12]** Исследование и расчет трехфазной электрической цепи при соединении нагрузки звездой и треугольником. Анализ цепей при наличии несинусоидальных источников
- 7. Работа№6. Исследование нелинейных электрических цепей постоянного тока {творческое задание} (4ч.)[1,12,13] Снятие ВАХ статическим способом. Расчет параллельно последовательного соединения нелинейных элементов и проходной характеристики нелинейной цепи
- **8.** Работа №7. Исследование и расчет переходных процессов(6ч.)[1,12] Моделирование и расчет переходного процесса классическим и операторным методом

Самостоятельная работа (52ч.)

1. Подготовка отчетов по выполненным работам(25ч.)[1,5,7,8,9,10,11,13,14,15,18,19,20,21] Целью самостоятельной работы студентов (СРС) является углубление и закрепление знаний по изучаемым теоретическим разделам дисциплины, подготовка к выполнению лабораторных работ и их защите, оформление отчетов по выполненным лабораторным работам.

Самостоятельное освоение некоторой части учебного и справочно-методического материала осуществляется в течение всего семестра при выполнении лабораторных работ, расчетного задания и подготовке к экзамену.

Кроме того, в рамках СРС студенты должны:

- 1. После первой лекции повторить раздел "Электричество и магнетизм" школьного курса физики.
- 2. К защите первой лабораторной работы необходимо прочитать раздел, посвященный основам терминологии информационно-измерительной техники и метрологии.
- 3. К защите второй лабораторной работы по прилагаемой литературе и Интернет информационным ресурсам самостоятельно изучить раздел "Методы и средства автоматизации схемотехнического проектирования электронных схем". Среди таких средств можно назвать системы проектирования ACAD, Altium (P-CAD), MultiCap, Proteus, Orcade, а также программное обеспечение фирмы National Instruments (LabView, Multisim). Нужно получить общее представление о возможностях перечисленных систем и уметь дать их сравнительную характеристику. При этом детально нужно освоить основы работы в среде MultiSim, а также на Интернет ресурсах
- **2. Подготовка к экзамену(27ч.)[7,12,13]** Основной упор на решение типовых задач, так как они дают возможность максимально повысить рейтинг

Семестр: 4

Объем дисциплины в семестре з.е. /час: 3.75 / 132

Форма промежуточной аттестации: Экзамен

Виды занятий, их трудоемкость (час.)			Объем контактной работы	
Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	обучающегося с преподавателем (час)
34	34	0	64	74

Лекционные занятия (34ч.)

1. Тема **1.** Введение. Тема **2.** Многополюсники. Электрические фильтры. **{беседа} (2ч.)[2,3,6,16,17,22,23]** Введение. (1 час)

Общее представление о предметной области. Основные задачи дисциплины и ее взаимосвязь с другими дисциплинами. Области практического применения полученных знаний и навыков. Структура модуля и его связь с другими дисциплинами. Требования к уровню усвоения материала. Общее представление об электронике. Понятие сигнала. Компонентная база электроники. Номенклатура современной компонентной базы. Пассивные компоненты электронных цепей. Основные параметры конденсаторов и резисторов. Ряды номинальных значений.

Многополюсники. Электрические фильтры (1 час)

Основные определения и классификация четырехполюсников и двухполюсников. Многополюсные цепи. Четырехполюсники и функциональные блоки. Частотные характеристики реактивных двухполюсников. Понятие AЧX и ФЧX.

- Логарифмический и полулогарифмический масштаб осей. Передаточная функция. Активные и пассивные электрические фильтры. Передаточная функция и ее связь с дифференциальным уравнением, импульсной и частотными характеристиками. Использование преобразования Лапласа для анализа цепей. Коэффициент передачи и передаточная функция. Основные типы фильтров и их характеристика. Активные и пассивные фильтры. Фильтры Бесселя, Баттерворта и Чебышева. Пассивные и активные фильтры. Общее представление о методах расчета и оптимизации параметров фильтра. Краткое содержание лабораторной работы №1
- 2. Тема 3. Основы физики полупроводников {беседа} (2ч.)[3] Физические законы и явления, лежащие в основе работы электронных полупроводниковых приборов. Полупроводники: понятие о зонной теории, зонная энергетическая диаграмма, основные термины и определения, виды проводимости, основные законы, описывающие происходящие в полупроводниках физические явления. Кинетические явления в полупроводниках. Термоэлектрические и гальваномагнитные явления. Электропроводность в сильных электрических полях.
- **3. Тема 4. Полупроводниковые приборы на основе кинетических явлений** {**беседа**} **(2ч.)[6,16]** Термопары, элементы Пельте, тензорезисторы и фоторезисторы. Диоды Ганна. Датчики Холла. Терморезисторы: их основные свойства и характеристики. Краткое содержание лабораторной работы № 2.
- **4. Тема 5. Электронно-дырочный переход и его свойства {беседа} (2ч.)[6,16]** Виды электрических переходов. Потенциальная диаграмма электроннодырочного перехода и его ВАХ. Физические явления в р-п переходах. Барьер Шоттки. Емкость и толщина р-п перехода. Виды пробоев р-п перехода и его частотные свойства. Модели р-п перехода.
- 5. Тема 6. Полупроводниковые с одним р-п переходом {беседа} (2ч.)[6] Система обозначений полупроводниковых приборов. Эквивалентная схема (схема замещения), параметры характеристики полупроводниковых И Выпрямительные, универсальные И импульсные диоды. Диоды умножительные, настроечные, (смесительные, генераторные переключательные) диоды Шоттки. Туннельные диоды. Лавинопролетные диоды. Фотодиоды и светодиоды. Варисторы и варикапы. Условные графические обозначения, система характеристик и параметров перечисленных приборов. Конструкция и основные технологии изготовления р-п переходов.
- **6. Тема 7. Полупроводниковый стабилитрон и его применение {беседа} (2ч.)[6]** Стабилитроны. ВАХ. Параметры стабилитрона. Параметрический стабилизатор. Принцип работы, основные характеристики и методы расчета. Краткое содержание лабораторной работы № 3.
- 7. Тема 8. Биполярные транзисторы (БТ) {беседа} (4ч.)[6] Принцип работы БТ. БТ р-n-р и n-p-n типа. Технологии изготовления БТ. Сплавные и диффузионные БТ. Инверсное включение. Режимы: отсечки, инверсный, рабочий, насыщения. Конструкция и основные технологии изготовления. Характеристика схем включения с ОБ, ОЭ и ОК и их ВАХ. Эффект Эрли. Температурные зависимости и частотные свойства БТ. Работа в импульсном режиме. Модели и схемы

- замещения, система h-параметров. Другие основные параметры БТ. Виды БТ: однопереходные, лавинные, и многоэмиттерные транзисторы. Система маркировки, обозначений и УГО БТ. Краткое содержание лабораторной работы N = 4.
- **8.** Тема **9.** Полупроводниковые приборы с несколькими р-п переходами **{беседа} (2ч.)[6]** Принцип работы, УГО, основные характеристики и параметры тиристоров и их разновидностей: динисторов, тринисторов и симисторов.
- 9. Тема 10. Полевые транзисторы {беседа} (4ч.)[6] Полевые транзисторы с p-n переходом и каналом n и p типа: принцип работы, семейство BAX, основные параметры. Полевые транзисторы с изолированным затвором и встроенным и индуцированным каналом. КМОП-структуры и технологии их изготовления. Устройства на основе ПТ: истоковый повторитель, коммутатор аналоговых сигналов, УВХ, источник тока с термостабильной точкой. Разновидности ПТ. Современные технологии на основе напряженного кремния, с УФ и иммерсионным слоем. Краткое содержание лабораторной работы № 5.
- **10. Тема 11.**Элементы силовой электроники {беседа} (2ч.)[6] Области допустимых значений ВАХ. Пробои в БТ и их параллельное включение. Мощные FET –транзисторы. Силовые IGBT транзисторы.
- 11. Тема 12. Усилители электрических сигналов {беседа} (4ч.)[6] Определение. Классификация, основные характеристики и параметры усилителей. Параметры усилителей статические и динамические. Режимы усиления класса A, B, C и D и характеристика. Усилительные каскады переменного сравнительная постоянного тока: частотные и переходные характеристики. Усилители на биполярных транзисторах. Принцип работы усилителя на БТ. Графический и аналитический методы расчета. Статический и динамический режим работы. Обратные связи в усилителях: назначение, классификация и методы расчета. Способы реализации ООС в усилителях. Термостабилизация. Особенности схемотехники усилителей на полевых транзисторах. Дифференциальный режим работы. Усилительные каскады с динамической нагрузкой и пушпульные каскады. Транзисторы Дарлингтона и составные транзисторы. Усилители мощности и напряжения (предварительные усилители). Усилители постоянного тока. Двухтактные усилители мощности: фазоинверсный каскад, каскады на комплиментарных парах. Многокаскадные усилители. Виды межкаскадной связи. Трансформаторные Мостовые усилители. схемы. Краткое содержание лабораторной работы № 6.
- 12. Тема 13. Операционные усилители {беседа} (2ч.)[6] Усилители постоянного тока. Операционные усилители (ОУ): основные свойства, назначение, основные характеристики (АЧХ, амплитудная и др.) и параметры (входные, выходные, частотные, усилительные, шумовые, стабильности, предельные, динамический диапазон, эксплуатационные). Устойчивость усилителей и коррекция их характеристик. Типовые схемотехнические решения на ОУ.
- 13. Тема 14. Электровакуумные и газоразрядные приборы.
- **Тема 15.** Элементы оптоэлектроники. {беседа} (2ч.)[6] Тема 14. Электровакуумные и газоразрядные приборы. (1 час) Тиратроны и неоновые

лампы. ВАХ газового разряда. Физические явления, используемые в электровакуумных приборов. Вакуумные диоды, триоды, тетроды и пентоды. Основы электронной оптики. Кинескопы. ЭЛТ с электростатическим и магнитным отклонением. Электронные приборы СВЧ: магнетроны, клистроны, лампы бегущей и обратной волны. Волноводы и их виды. Принцип работы радиолокаторов и СВЧ – печей. УВЧ – терапия.

Тема 15. Элементы оптоэлектроники. (1 час)

Классификация оптоэлектронных приборов и физические явления, ежащие в основе их работы. Фотоприемники интегрального типа. Светоизлучатели. Оптроны. Полупроводниковые преобразователи изображения и координатночувствительные фотоприемники. Кинескопы. ПЗС — фотоприемники и фотодиодные матрицы. Нанотрубки. ЖКИ. Электролюминесцентные индикаторы. Краткое содержание лабораторной работы № 7.

14. Тема 16 Микросхемотехника {беседа} (2ч.)[6] Микросхемы. Классификация ИС. ИС малой, средней и высокой степени интеграции. БИС и СБИС. Основные технологические операции. Разновидности интегральных схем и технологий их изготовления. Усилители в интегральном исполнении. Аналоговые и цифровые ИС. Базовые элементы цифровых ИС и их сравнительные характеристики. Система условных обозначений ИС.

Лабораторные работы (34ч.)

- **1. Вводное занятие {мини-лекция} (1ч.)[1]** Знакомство с лабораторным стендом в части работ по электронике. Изучение и сдача правил техники безопасности (1 час)
- **2. Работа № 1. Исследование свойств пассивных RC- фильтров {творческое задание} (5ч.)[1,9,12]** Снятие АЧХ и ФЧХ пассивных фильтров и их расчет. Комплексный коэффициент передачи и передаточная функция четырехполюсника
- 3. Работа № 2. Нахождение параметров термистора {творческое задание} (6ч.)[1,3,6] Полупроводниковые приборы на основе кинетических явлений в полупроводниках
- **4.** Работа № **3.** Исследование работы и определение параметров и характеристик стабилитрона и стабилизатора напряжения. {творческое задание} (4ч.)[1,3,6] Полупроводниковые приборы на основе явлений в электрических переходах.
- **5.** Работа № **4.** Определение параметров и снятие характеристик биполярного транзистора {творческое задание} (4ч.)[1,3,6] Схемы замещения. Системы параметров. Семейства вольтамперных характеристик и вычисление параметров
- 6. Работа № 5. Исследование работы и определение параметров униполярного транзистора {творческое задание} (4ч.)[1,3,6] Снятие семейств ВАХ на характериографе. Расчет основных параметров по ВАХ. Исследование свойств простейшей схемы электрически управляемого аттенюатора
- 7. Работа № 6. Исследование работы усилителя на биполярном

транзисторе(**6ч.**)[**1,6**] Исследование режимов работы усилительного каскада на биполярном транзисторе, включенном по схеме с ОЭ. Режимы работы усилительных каскадов (A,AB,B,C,D). Усиление по постоянному и переменному току. Оценка влияния величины обратной связи на свойства усилителя. Термостабилизация усилительных каскадов. Общие принципы настройки и наладки усилительных каскадов.

8. Работа № 7. Определение параметров оптрона(4ч.)[1,6] Исследование работы фототранзисторного оптрона и снятие его характеристик и параметров

Самостоятельная работа (64ч.)

- 1. подготовка к выполнению лабораторных работ(37ч.)[1,3,6,10,11,16,17,22,23] Целью самостоятельной работы студентов (СРС) является углубление и закрепление знаний по изучаемым теоретическим разделам дисциплины, подготовка к выполнению лабораторных работ и их защите, оформление отчетов по выполненным лабораторным работам. Самостоятельное освоение некоторой части учебного и справочно-методического материала осуществляется в течение всего семестра при выполнении лабораторных работ, расчетного задания и подготовке к экзамену
- **2.** Подготовка к экзамену(27ч.)[3,6,16] При подготовке особое внимание на решение задач, поскольку отдельных практических занятий учебным планом не предусмотрено, но все они подобны тем задачам, которые решались при составлении отчетов по лабораторным работам

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам: Лань, Университетская библиотека он-лайн, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

- 1. Сучкова Л.И. Аппаратно-программное обеспечение лабораторного практикума по курсу "Электротехника и электроника": учеб. пособие /Сучкова Л. И., Якунин А. Г.; Алт. гос. техн. ун-т им. И. И. Ползунова.-Барнаул: Изд-во АлтГТУ, 2008.- 206 с.: ил. -10 экз.- Прямая ссылка: Прямая ссылка: http://elib.altstu.ru/eum/download/avs/eltech-suchkva.pdf
- 2. Якунин А.Г. Компонентная база электронной техники: Учебное пособие для студентов электротехнических специальностей /А. Г. Якунин.-(pdf-файл 623 Кбайта).-Барнаул: АлтГТУ, 2010.-50 с. URL: http://elib.altstu.ru/eum/download/vsib/Jakunin-eb.pdf
- 3. Якунин А.Г. Основы электроники: Учебное пособие для студентов электротехнических специальностей /Элементная база и материалы электронной аппаратуры. Пассивные и электронные компоненты общего применения. Основы

- физики полупроводников. Полупроводниковая схемотехника. Якунин А.Г.-(pdf-файл 1,17 Мбайт)-Барнаул: АлтГТУ, 2007.-104 с.: ил. Прямая ссылка: http://elib.altstu.ru/eum/download/avs/JakuninOsEl.pdf
- 4. Сучкова Л.И. Информационно-измерительные и управляющие системы : Учебное пособие /Л. И. Сучкова, А. Г. Якунин.-(pdf-файл : 1,78 Мбайта).-Барнаул: АлтГТУ, 2014.-145 с.: ил.-Прямая ссылка: http://elib.altstu.ru/eum/download/vsib/Sutkova-iiup.pdf

6. Перечень учебной литературы

- 6.1. Основная литература
- 5. Ермуратский П.В., Лычкин Г.П., Минкин Ю.Б. Электротехника и электроника. Изд-во ДМК Пресс, 2011.-417 с. http://e.lanbook.com/books/element.php?pl1 cid=25&pl1 id=908
- 6. Соколов, Сергей Викторович. Электроника [Электронный ресурс] / С. В. Соколов, Е. В. Титов. Электрон. текстовые дан. Москва : Горячая линия-Телеком, 2017. 204 с. : ил. Режим доступа: https://e.lanbook.com/book/111101
- 7. Рекус Г. Г. Основы электротехники и электроники в задачах с решениями: учеб. пособие [электронный ресурс]. М.: Директ-Медиа, 2014.- 344 с. Доступ из ЭБС «Университетская библиотека online». Режим доступа: http://biblioclub.ru/index.php?page=book red&id=233698&sr=1. Загл. с экр.

6.2. Дополнительная литература

- 8. Земляков, В.Л. Электротехника и электроника : учебник / В.Л. Земляков. Ростов-на-Дону : Издательство Южного федерального университета, 2008. 304 с. Библиогр. в кн. ISBN 978-5-9275-0454-1 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=241108 (04.01.2019)
- 9. Бакалов, В.П. Основы анализа цепей [Электронный ресурс] : учебное пособие / В.П. Бакалов, О.Б. Журавлева, Б.И. Крук. Электрон. дан. М. : Горячая линия-Телеком, 2014. 592 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=63222 Загл. с экрана
- 10. Белов Н. В. Электротехника и основы электроники [Электронный ресурс] : учебное пособие / Белов Н. В., Волков Ю. С. Электрон. дан. СПб. : Лань, 2012. 431 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=3553 Загл. с экрана.
- 11. Сильвашко, С.А. Лабораторный практикум по дисциплине «Электротехника, электроника и схемотехника» : учебное пособие / С.А. Сильвашко. Оренбург : ОГУ, 2012. 103 с. : ил., схем. Библиогр. в кн. ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=270292 (04.01.2019).

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 12. Бессонов Л.А. Теоретические основы электротехники [Электронный ресурс]/ Л.А. Бессонов. Режим доступа: http://www.toroid.ru/bessonovLA.html, http://www.samomudr.ru/d/Bessonov%20L.A. %20Teoreticheskie%20osnovy%20elektrotexniki.%20Elektricheskie%20cepi.%201996
- %20Teoreticheskie%20osnovy%20elektrotexniki.%20Elektricheskie%20cepi.%201996.pdf
- 13. Голубев, А. Н. Теоретические основы электротехники [Электронный ресурс]/ А. Н. Голубев; ИГЭУ, кафедра теоретических основ электротехники и электротехнологии. Режим доступа: http://expertes.by/sites/default/files/golubev_a.n._teoreticheskie_osnovy_elektrotehniki. chast 1.docx
- 14. Голубев, А. Н. Теоретические основы электротехники (часть1) [Электронный ресурс]/ А. Н. Голубев; ИГЭУ, кафедра теоретических основ электротехники и электротехнологии. Иваново, 2007. Режим доступа: https://studfiles.net/preview/3061817/page:2/, свободный. Загл. с экрана. Яз. рус.
- 15. Голубев, А. Н. Теоретические основы электротехники (часть2) [Электронный ресурс]/ А. Н. Голубев; ИГЭУ, кафедра теоретических основ электротехники и электротехнологии. Иваново, 2007. Режим доступа: http://xn--b1ajwv.xn--p1ai/files/mu toe2.pdf, свободный. Загл. с экрана. Яз. рус.
- 16. Прянишников В.А. Электроника курс лекций. 1998 http://madelectronics.ru/book/radiolyubitelyam/2009-01-18-07-51-06-178.htm
- 17. Электроника для начинающих. Начальный курс электроники. Основы электроники. Курс лекций по электронике . Учебник [Электронный ресурс]/ Режим доступа: http://madelectronics.ru/uchebnik/
- 18. Описание основ SPICE моделей.[Электронный ресурс] / Официальный сайт фирмы National Instruments. Режим доступа: http://zone.ni.com/devzone/cda/tut/p/id/5413 (NI Developer Zone) , свободный. Загл.с экрана. Яз.англ. SPICE Simulation Fundamentals. [Электронный ресурс] / http://www.ni.com/white-paper/5413/en
- 19. National instruments. Multisim 14. Загрузка для студентов [Электронный ресурс]/ Режим доступа: http://ftp.ni.com/support/softlib/Core/Circuit_Design_Suite/14.1/14.1/NI_Circuit_Design_Suite 14.1 Education.exe
- 20. Micro-Cap 12, SPICE circuit simulator: evaluation version [Электронный ресурс] / Режим доступа: http://www.spectrum-soft.com/index.shtm, свободный. Загл.с экрана. Яз.англ.
- 21. Эмулятор электрических схем [Электронный ресурс] /— Режим доступа: http://www.falstad.com/circuit, свободный. Загл.с экрана. Яз.англ.
- 22. Фирма Терраэлектрника [Электронный ресурс] / Официальный сайт и каталог электронных компонентов с документацией. Режим доступа: http://www.terraelectronica.ru/, свободный. Загл.с экрана. Яз.рус.
- 23. Easy electronic электроника для всех [Электронный ресурс]/ Режим доступа: http://easyelectronics.ru/

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

Фонд оценочных материалов (ФОМ) по дисциплине представлен в приложении А.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационнообразовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение
1	Windows
2	Kaspersky Endpoint Security для бизнеса Расширенный
3	LibreOffice
4	Mathcad 15
5	Foxit Reader
6	Scilab
7	Microsoft Office Visio Standard 2007
8	Антивирус Kaspersky

№пп	Используемые профессиональные базы данных и информационные
	справочные системы
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным ресурсам" для студентов и преподавателей; каталог ссылок на образовательные интернет-ресурсы (http://Window.edu.ru)
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к фондам российских библиотек. Содержит коллекции оцифрованных документов (как открытого доступа, так и ограниченных авторским правом), а также каталог изданий, хранящихся в библиотеках России. (http://нэб.рф/)

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы
учебные аудитории для проведения занятий лекционного типа
учебные аудитории для проведения групповых и индивидуальных консультаций
учебные аудитории для проведения текущего контроля и промежуточной аттестации
помещения для самостоятельной работы

Наименование специальных помещений и помещений для самостоятельной работы лаборатории

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».