АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ «Методы и средства анализа информационных систем»

по основной профессиональной образовательной программе по направлению подготовки 09.03.01 «Информатика и вычислительная техника» (уровень бакалавриата)

Направленность (профиль): Программно-техническое обеспечение автоматизированных систем **Общий объем дисциплины** – 3 з.е. (108 часов)

Форма промежуточной аттестации – Зачет.

В результате освоения дисциплины обучающийся должен обладать следующими компетенциями:

- ОПК-2: способностью осваивать методики использования программных средств для решения практических задач;
- ПК-1: способностью разрабатывать модели компонентов информационных систем, включая модели баз данных и модели интерфейсов "человек электронно-вычислительная машина";
- ПК-3: способностью обосновывать принимаемые проектные решения, осуществлять постановку и выполнять эксперименты по проверке их корректности и эффективности;

Содержание дисциплины:

Дисциплина «Методы и средства анализа информационных систем» включает в себя следующие разделы:

Форма обучения заочная. Семестр 7.

1. Определение и классификация информационных систем. Анализ информационных систем. Описание системы как «черного ящика». Декомпозиция систем. Определение информационной системы (ИС). Классификация информационных систем. Автоматизированные информационные системы. Обзор методов и средств анализа информационных систем на основе SADT-диаграмм (методологии IDEF0, диаграмм потоков данных (DFD), диаграмм «сущностьсвязь» (ERD), UML-диаграмм (диаграмм взаимодействия (Interaction)), сетей Петри. В дальнейшем для ведения расчетов предполагается использование средств пакета Scilab или Visual Studio. В результате изучения данной дисциплины студенты будут знать основные программные средства и методики их использования для решения задач анализа информационных систем, модели компонентов информационных систем, применяемых для их анализа, типовые проектные решения, используемые для сравнительного анализа, методы с анализа информационных систем, с применением стандартных пакетов автоматизированного проектирования и исследований. Студенты будут уметь выбирать и применять программные средства для решения задач анализа информационных систем, обосновывать принимаемые проектные решения с использованием методов анализа информационных систем, составлять описания проведенных исследований, а также отчеты по результатам исследований и разработок по анализу информационных систем. Будут владеть технологиями использования программных средств для решения задач анализа информационных систем. В заключении лекции рассматриваются темы : реализация модели типа «черный ящик» в виде «вход – выход» различными способами; модели, в которых измеряются количество входных и выходных воздействий, выбираются последовательности входных воздействий, случайных и направленных и формируются векторы «входов» и «выходов»; использование протоколов испытаний для разработки прогнозы поведения системы; рекомендации по корректировке управляющих воздействий; модели, в которых «выходы» рассматриваются как цели, и осуществляется поиск входных управляющих воздействий, обеспечивающих достижение целей; изучение модели системы взаимодействующее со средой на своих входах и выходах; применимость метода «черного ящика» и его огромные затраты по времени и средствам; декомпозиция - метод математического описания систем..

2. Анализ структурных характеристик

алгоритмических систем. Функциональный анализ информационно- управляющих систем. Выбор степени автоматизации управления управляющих систем. Применение ориентированных графов в качестве модели структуры комплекса при оценке количественных характеристик алгоритмического комплекса ИС. Вершины графа отображают задачи, а дуги —

информационные связи между задачами. Анализ модели с целью выявления контуров, определения длины путей между вершинами графа, а также определения всех количественных характеристики алгоритмического комплекса.

Определение степени участия человека в процессе управления ИУС на основе степени автоматизации управления с использованием общего количество связей между алгоритмами; числа связей, по которым передается информация для автоматического управления. Влияние на выбор степени автоматизации управления двух факторов: ограниченности пропускной способности оператора и затраты. Повышение степени автоматизации и ее взаимосвязь с дополнительными затратами: дополнительные технические средства (датчики, исполнительные средства, линии связи), рост расходов на наладку и эксплуатацию. Повышение степени улучшения характеристик управления, уменьшении автоматизации ДЛЯ обслуживающего персонала и улучшения условия труда. Определение минимального уровня автоматизации и его взаимосвязь минимальное количество информации, обрабатываемой автоматически..

3. Анализ эффективности информационных систем в условиях определенности. Оценка проектных решений: Принятие решений при проектировании информационных систем (ИС) – выбор лучшего варианта построения системы.

Выбор показателя эффективности для количественной оценки качества вариантов системы. Требования, предъявляемые к системе техническим заданием при выборе показателя эффективности. Использование экономических показателей для сравнения между собой примерно равных по техническим характеристикам вариантов ИС. Планирование процесса создания системы, с учетом минимизации затрат на проектирование и эксплуатацию.

Анализ загрузки устройств вычислительной системы: Использование операторного метода для анализа загрузки, и при модернизации существующих вычислительных систем (ВС). Экспериментальное получение исходных данных для расчета производительности ВС и отдельных ее устройств с помощью аппаратных и программных измерительных систем. Описание функциональных связей устройств ВС в виде графа, вершины которого обозначают номера устройств, а дуги связи между устройствами. Расчет производительности работы вычислительной системы и ее отдельных устройств, методом операционного анализа.

Расчет пропускной способности ВС, и ее использование в качестве критерия производительности вычислительной системы. Максимизация пропускной способности ВС.

Планирование проверок технического состояния информационных систем: Использования программного контроля в информационных системах с аппаратным контролем для анализа ситуаций, когда возникающие неисправности не могут обнаруживаться техническими средствами. Изучение наиболее часто встречающихся случаев, когда контролирующие программы включаются в заранее определенные моменты времени с определенной периодичностью с заданной длительностью процесса контроля. Исследование системы, когда поток отказов в аппаратуре имеет случайный характер и описывается экспоненциальным законом плотности распределения вероятности.

4. Оценка сложных систем в условиях неопределенности. Оценка сложных систем в условиях риска. Специфические черты организационно-технических систем и их ограниченность при сведении операций, проводимой этими системами, к детерминированным или вероятностным. Задание неопределенности операции множеством состояний обстановки и эффективностью системы для каждой из них. Проблема отсутствия данных о вероятности появления состояний системы. Деление операций на игровые и статистически неопределенные, в зависимости от характера неопределенности. Неопределенность в игровых операциях, вносимая сознательными действиями противника. Использование теории игр для исследования игровых операций. Условия статистически неопределенных операций и их зависимость от объективной действительности, называемой природой. Природа, как незаинтересованная, безразличная к операции сторона, пассивная по отношению к лицу, принимающему решение. Исследование операции при игре с природой с применением теории статистических решений.

Использование субъективных предпочтений «лица, принимающего решение» (ЛПР) в случае

уникальности операции, проводимой системой, для разрешения неопределенности при оценке систем. Использования в наиболее часто в неопределенных операциях критерия среднего выигрыша; Лапласа; осторожного наблюдателя (Вальда); максимакса; пессимизма-оптимизма (Гурвица); минимального риска (Сэвиджа) в зависимости от характера предпочтений ЛПР.

Вероятностные операции, выполняемые в условиях риска. Нарушение соответствия между системами и исходами в вероятностных операциях. Соответствие каждой системе (альтернативе) множества исходов с известными условными вероятностями появления. Пример изменение случайным образом по известному закону времени передачи сообщения, из-за ограниченной надежности сетевого оборудования. Вычисление эффективности систем в вероятностных операциях через математическое ожидание функции полезности на множестве исходов. Оценка эффективности систем в вероятностной операции. Оценка систем в условиях вероятностной операции и ее недостатки. Сведение задачи оценки систем к вероятностной постановке применимо для операций, имеющих массовый характер..

Разработал:

доцент

кафедры ПМ А.В. Сорокин

Проверил:

Декан ФИТ А.С. Авдеев