Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ФИТ А.С. Авдеев

Рабочая программа дисциплины

Код и наименование дисциплины: **Б1.В.22** «Интеллектуальные средства измерения»

Код и наименование направления подготовки (специальности): 12.03.01 Приборостроение

Направленность (профиль, специализация): **Информационно-измерительная** техника, технологии и интеллектуальные системы

Статус дисциплины: часть, формируемая участниками образовательных отношений

Форма обучения: заочная

Статус	Должность	И.О. Фамилия
Разработал	доцент	Д.Е. Кривобоков
	Зав. кафедрой «ИТ»	А.Г. Зрюмова
Согласовал	руководитель направленности	А.Г. Зрюмова
	(профиля) программы	

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Содержание компетенции	Индикатор	Содержание индикатора
ПК-4	Способность участвовать в разработке функциональных, структурных и принципиальных схем приборов и систем	ПК-4.1	Участвует в разработке принципиальных схем приборов и систем
11K-4		ПК-4.2	Участвует в разработке функциональных и структурных схем приборов и систем
	Способность разрабатывать, создавать, использовать контрольно-измерительные приборы, системы, в том числе интеллектуальные, и комплексы с помощью компьютерных технологий	ПК-8.3	Разрабатывает и создает интеллектуальные измерительные системы
ПК-8		ПК-8.4	Использует компьютерные технологии для разработки контрольно-измерительных приборов, информационных, измерительных и интеллектуальных систем

2. Место дисциплины в структуре образовательной программы

Дисциплины (практики),	
предшествующие изучению	обеспечение измерительных процессов, Электроника
дисциплины, результаты	и основы микропроцессорной техники
освоения которых необходимы	
для освоения данной	
дисциплины.	
Дисциплины (практики), для	Нейронные сети в измерительных задачах,
которых результаты освоения	Преддипломная практика, Проектно-конструкторская
данной дисциплины будут	
необходимы, как входные	
знания, умения и владения для	
их изучения.	

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 4 / 144 Форма промежуточной аттестации: Экзамен

		Виды занятий, их трудоемкость (час.)			
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
заочная	8	8	0	128	21

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: заочная

Семестр: 9

Лекционные занятия (8ч.)

- 1. Введение {лекция с разбором конкретных ситуаций} (1ч.)[4,6] Основные понятия и концепции создания адаптивных систем, в том числе измерительных систем. Анализ проблем и влияющих на это факторов при создании адаптивных систем. Актуальность разработки, особенности применения, перспективы. Ознакомление с технологиями, использующимися для разработки адаптивных измерительных систем.
- 2. Основы разработки адаптивных измерительных систем {лекция с разбором конкретных ситуаций} (1ч.)[3,4,5] Базовые принципы реализации механизмов адаптации, устранение неопределенности. Пример постановки задачи реализации адаптивного средства измерений и поиска вариантов решения. Варианты функционального назначения адаптивных элементов в современных измерительных системах. Принципы разработки структурных схем адаптивных измерительных систем. Варианты реализации адаптивных элементов системы
- 3. Разработка адаптивных механизмов систем. {лекция с разбором ситуаций} (24.)[3,6,7]Способы конкретных и технологии реализации адаптивных систем. Современные программные средства, применяемые для моделирования измерительных преобразований и процессов. программно-математических и физических моделей для разработки адаптивных и самообучаемых систем. Принципы разработки физически обоснованных моделей адаптивных механизмов систем. Методика оценки вычислительных и информационных ресурсов для реализации адаптивных механизмов в измерительных.
- 3. Разработка программного проекта управления состоянием дисплея для микроконтроллера K1986BE92QI в среде программирования Keil µVision {работа в малых группах} (2ч.)[3,4] Цель: получить навык программирования микроконтроллера K1986BE92QI для управления внешними устройствами, на примере дисплея МТ-12864. Задачи: познакомиться с техническим описанием дисплея МТ-12864; познакомиться с библиотеками для управления и работы с дисплеем; получить навык разработки программного проекта для управления состоянием дисплея.
- **4.** Средства реализации адаптивных элементов измерительных систем. {лекция с разбором конкретных ситуаций} (1ч.)[3,5] Микроконтроллеры, микрокомпьютеры. Общая сравнительная характеристика. Периферийные устройства (Flash-память, SDRAM, контроллеры интерфейсов, ЦАП, АЦП),

- используемые для реализации адаптивных систем. Типовые принципиальные электрические схемы устройств на базе микроконтроллера STM32 и микрокомпьютеров Raspberry для реализации адаптивных измерительных систем. Поиск и обоснование вариантов применения микроконтроллеров и периферийных устройств для решения задачи разработки измерительного прибора, примеры.
- **5.** Алгоритмы программ адаптивных измерительных систем. {лекция с разбором конкретных ситуаций} (1ч.)[3,4,7] Особенности разработки и реализации алгоритмов программ для микроконтроллеров. Стандартные библиотеки для реализации программных элементов адаптивных измерительных систем. Применение информационных систем для изучения возможностей и применения новых библиотек.

Лабораторные работы (8ч.)

- 1. Ознакомление с отладочной платой для микроконтроллера К1986BE92QI и средой программирования Keil µVision {работа в малых группах} (2ч.)[1] Цель: получить навык программирования микроконтроллера К1986BE92QI при демонстрационно-отладочной платы 986EvBrd 64. Задачи: функциональными возможностями устройством познакомиться И демонстрационно-отладочной платы 986EvBrd 64, устройством микроконтроллера K1986BE92QI, оборудованием; - выполнить необходимого программного обеспечения в виде Keil µVision и дополнений, программирования микроконтроллера необходимых ДЛЯ K1986BE92QI; выполнить анализ предложенного программного проекта управления элементами отладочной платы 986EvBrd 64; - на основании полученного задания внести корректировки в предложен-ном программном проекте.
- 2. Разработка программного проекта для микроконтроллера К1986ВЕ92QI в среде программирования Keil µVision при использовании стандартных библиотек {работа в малых группах} (2ч.)[1] Цель: получить навык программирования микроконтроллера К1986ВЕ92QI при использовании стандартных библиотек. Задачи: познакомиться со структурой стандартной библиотеки (1986ВЕ9х Stand-ard Peripherals Library); освоить методику применения библиотек для создания программных проектов; получить навык применения библиотек путём соответствующей модификации текста программы первой лабораторной работы
- 3. Разработка программного проекта управления состоянием дисплея для микроконтроллера K1986BE92QI в среде программирования Keil µVision {работа в малых группах} (2ч.)[1] Цель: получить навык программирования микроконтроллера K1986BE92QI для управления внешними устройствами, на примере дисплея МТ-12864. Задачи: познакомиться с техническим описанием дисплея МТ-12864; познакомиться с библиотеками для управления и работы с дисплеем; получить навык разработки программного проекта для управления состоянием дисплея.
- 4. Разработка программного проекта управления курсором дисплея при

помощи клавиш демонстрационно-отладочной платы 986EvBrd_64 {работа в малых группах} (2ч.)[1] Цель: получить навык разработки алгоритма и программного проекта при одновременном использовании нескольких устройств платы 986EvBrd_64. Задачи: - разработать алгоритм управления курсором на экране дисплей посредством клавиш; - разработать программный проект, реализующий алгоритм управления курсором.

Самостоятельная работа (128ч.)

- 1. Подготовка к лекционным занятиям {использование общественных ресурсов} (46ч.)[3,4,5,6,7]
- 2. Подготовка к выполнению практических работ, оформление отчета {использование общественных ресурсов} (61ч.)[1]
- 3. Контрольная работа {использование общественных ресурсов} (12ч.)[2]
- 4. Экзамен {использование общественных ресурсов} (9ч.)[3,4,5,6,7]

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам: Лань, Университетская библиотека он-лайн, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

- 1. Кривобоков Д. Е. Методические указания для выполнения лабораторных работ по дисци- плине «Интеллектуальные средства измерений» / Д.Е. Кривобоков. Барнаул: АлтГТУ, 2020. 30 с. Режим доступа: http://elib.altstu.ru/eum/download/it/Krivobokov_ISI_mu.pdf
- 2. Кривобоков Д. Е. Методические указания для выполнения контрольных работ по дисциплине «Интеллектуальные средства измерений» / Д.Е. Кривобоков. Барнаул: АлтГТУ, 2020. 12 с. Режим доступа: http://elib.altstu.ru/eum/download/it/Krivobokov_IntSrIzm_kr_mu.pdf

6. Перечень учебной литературы

- 6.1. Основная литература
- 3. Белозерова, Г.И. Нечеткая логика и нейронные сети : учебное пособие : [16+] / Г.И. Белозерова, Д.М. Скуднев, З.А. Кононова ; Липецкий государственный педагогический университет имени П. П. Семенова-Тян-Шанского. Липецк : Липецкий государственный педагогический университет имени П.П. Семенова-Тян-Шанского, 2017. Ч. 1. 65 с. : ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=576909 Библиогр. в кн. ISBN 978-5-88526-875-2. Текст : электронный.
- 4. Кузьмин, В.В. Современные методы и средства формирования измерительных сигналов в АСУТП : учебник / В.В. Кузьмин, Р.К. Нургалиев, А.А.

Гайнуллина ; Министерство образования и науки России, Казанский национальный исследовательский технологический университет. – Казань : Казанский научно-исследовательский технологический университет (КНИТУ), 2017. – 276 с. : табл., схем., граф. – Режим доступа: по подписке. – URL: https://biblioclub.ru/index.php?page=book&id=560672 – Библиогр. в кн. – ISBN 978-5-7882-2223-3. – Текст : электронный.

5. Сахарова, Л.В. Современные проблемы прикладной математики и информатики : учебное пособие : [16+] / Л.В. Сахарова, Т.В. Алексейчик, М.Б. Стрюков ; Ростовский государственный экономический университет (РИНХ). – Ростов-на-Дону : Издательско-полиграфический комплекс РГЭУ (РИНХ), 2018. – 105 с. : схем., табл., ил. – Режим доступа: по подписке. – URL: https://biblioclub.ru/index.php?page=book&id=568567 – Библиогр. в кн. – ISBN 978-5-7972-2536-2. – Текст : электронный.

6.2. Дополнительная литература

- 6. Секацкий, В.С. Методы и средства измерений и контроля : учебное пособие / В.С. Секацкий, Ю.А. Пикалов, Н.В. Мерзликина ; Сибирский федеральный университет . Красноярск : Сибирский федеральный университет (СФУ), 2017. 316 с. : ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=497517 Библиогр.: с. 304-305. ISBN 978-5-7638-3612-7. Текст : электронный.
- 7. Дьяконов, В.П. МАТLAB 6.5 SP1/7/7 SP1/7 SP2 + Simulink 5/6. Инструменты искусственного интеллекта и биоинформатики : практическое пособие : [16+] / В.П. Дьяконов, В.В. Круглов. Москва : СОЛОН-ПРЕСС, 2009. 454 с. (Библиотека профессионала). Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=117721 ISBN 5-98003-255-X. Текст : электронный.

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

8. Бесплатное программное обеспечение CoDeSys. Ссылка: https://owen.ru/product/codesys_v2

https://ftp.owen.ru/CoDeSys23/06_Documentation/Plc100_15x_PlcConfiguration_v25.pdf

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса дисциплине, ПО включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационнообразовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение	
1	LibreOffice	
2	Windows	
3	Антивирус Kaspersky	

№пп	Используемые профессиональные базы данных и информационные			
	справочные системы			
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным			
	ресурсам" для студентов и преподавателей; каталог ссылок на образовательные			
	интернет-ресурсы (http://Window.edu.ru)			
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к			
	фондам российских библиотек. Содержит коллекции оцифрованных документов			
	(как открытого доступа, так и ограниченных авторским правом), а также каталог			
	изданий, хранящихся в библиотеках России. (http://нэб.рф/)			

10. материально-технической необходимой Описание базы, ДЛЯ осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы
учебные аудитории для проведения учебных занятий
помещения для самостоятельной работы

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».