Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ФЭАТ

А.С. Баранов

Рабочая программа дисциплины

Код и наименование дисциплины: **Б1.В.4** «Методы расчета и конструирования паровых котлов»

Код и наименование направления подготовки (специальности): **13.04.03 Энергетическое машиностроение**

Направленность (профиль, специализация): **Котельные установки и тепловые** двигатели

Статус дисциплины: **часть, формируемая участниками образовательных отношений**

Форма обучения: очная

Статус	Должность	И.О. Фамилия
Разработал	доцент	В.А. Голубев
	заведующий кафедрой	Е.Б. Жуков
	Зав. кафедрой «КиРС»	Е.Б. Жуков
Согласовал	руководитель направленности (профиля) программы	Е.Б. Жуков

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Содержание компетенции Индикатор Содержание индикатора		
ПК-1	Способен использовать знания теоретических основ рабочих процессов в энергетических машинах, аппаратах и установках, методов расчетного анализа объектов профессиональной деятельности	ПК-1.1	Оформляет эскизные, технические и рабочие проекты объектов энергетического машиностроения с использованием средств автоматизации проектирования, передового опыта разработки конкурентоспособных изделий энергетического машиностроения
		ПК-1.2	Составляет описания принципов действия и устройства проектируемых изделий и объектов энергетического машиностроения
		ПК-1.4	Проводит расчеты по проектам объектов энергетического машиностроения
ПК-2	Способен проводить анализ объектов профессиональной деятельности	ПК-2.1	Выполняет технико-экономический анализ эффективности проектируемых изделий и конструкций объектов энергетического машиностроения
		ПК-2.2	Анализирует существующие решения при создании продукции энергомашиностроения с учетом требований к уровню качества и безопасности
		ПК-2.3	Способен обосновывать принятые проектные и технические решения для объектов энергетического машиностроения

2. Место дисциплины в структуре образовательной программы

Дисциплины (практики),	Камеры сгорания ГТУ и специальные котлы, Теория
предшествующие изучению	и практика сжигания органических топлив
дисциплины, результаты	
освоения которых необходимы	
для освоения данной	
дисциплины.	
Дисциплины (практики), для	Автоматическое регулирование котельных установок,
которых результаты освоения	Преддипломная практика
данной дисциплины будут	
необходимы, как входные	
знания, умения и владения для	
их изучения.	

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 8 / 288

Форма промежуточной аттестации: Экзамен

	Виды занятий, их трудоемкость (час.)			Объем контактной	
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
очная	28	0	84	176	133

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: очная

Семестр: 3

Лекционные занятия (28ч.)

- 1. Энергия пара. Теоретические основы рабочих процессов паровых машин. {беседа} (2ч.)[4,6,7] Технико-экономический анализ промышленной революции, появление паровых машин и котлов. Обоснование энергии пара и паровой машины Ньюкомена, а так же парового котла Дэни Папена. Описание принципов действия и устройства универсальной паровой машина Джеймса Уатта. Мэтью Болтон, И.И. Ползунов. Протекционизм, навигационный акт Кромвеля, роль в развитии инноваций.
- 2. Эффективность использования энергии топлива в паровом котле и цикле Ренкина. {лекция с разбором конкретных ситуаций} (2ч.)[4,7] Описание цикла Ренкина, теоретические основы рабочих процессов данного цикла. Циклы ДВС, ГТУ, двигатели внутреннего и внешнего сгорания, сравнение с циклом Рэнкина. Роль и недостатки парового котла в преобразовании энергии топлива. Энергообеспечение и уровень жизни, график П.Л. Капицы. Классификация и типы котлов, их описание принципов действия и устройства.
- **3. Анализ экологических аспектов. {беседа} (2ч.)[1,2,3,4,6,7]** Экология. Глобальная циркуляция в атмосфере Земли и эмиссия. 30° параллель Каир, Пекин, южная часть Японии. Анализ причины грязного воздуха в поясе 30°±15°. Рассеивание примесей в атмосфере, влияние стратификации.
- **4.** Анализ зарубежной энергетики. Теоретические основы рабочих процессов зарубежных установок. {беседа} (2ч.)[6,7] Зарубежная энергетика, политика ЕС, Китая. Экология как инструмент вытеснения отечественного оборудования в странах СНГ и бывшего Варшавского договора, борьбы за рынки энергетики. Отказ от использования ископаемых видов топлива и другие новые тенденции. Проектные и технические решения этого направления для объектов энергетического машиностроения.
- **5.** Технико-экономический анализ конденсационного котла. {дискуссия} (2ч.)[5,7] Конденсационный котел Viessmann, как близкий к идеальном

- устройству, проектные и технические решения его конструкции. Новые типы систем отопления для конденсационных котлов. Технические решения по обеспечению экономичности, низких выбросов и компактности. Расчет по проекту конденсационного котла.
- **6.** Классификация и типы котлов, их описание принципов действия и устройства. {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5] Котел как теплообменник, трубная система котла. Типы трубных систем их особенности и достоинства: водотрубные, жаротрубные, с навитой поверхностью, гибридные, с погружным горением и др. Направления совершенствования котлов как устройств для передачи теплоты сгорания топлива к теплоносителю и как устройства для сжигания топлив. Уравнение теплового баланса котла и основные виды потерь тепла для котлов.
- 7. Котел как теплообменник. Основные проектные и технические решения. {беседа} (2ч.)[3,4,5] Три уравнения теплового баланса для конвективного теплообменника. Поверхности теплообмена, водяные эквиваленты, теплообменников, графики КПД для различных схем течения теплоносителей. процесса теплообмена выбор Завершенность И значения теплообмена. Котлы промышленной энергетики и продукция котельных заводов БиКЗ, ДорКЗ, БелКЗ и др., типы и особенности котлов. Котлы зарубежного производства. Прямоточные котлы типа Клейтон, особенности конструкции, схема и основные элементы.
- **8.** Анализ интенсификации теплообмена. {беседа} (2ч.)[4] Оребрение, интенсификация, турбулизаторы и другие меры по усилению теплопередачи. работа труб экранов. Охлаждение стен топки котла (теплогенератора) на примере теплогенератора Булерьян. Конструкция котла Булерьян, оцените увеличение площади внешней поверхности теплообмена. Организация топочного процесса, в Булерьяне: запуск, работа в режиме газификации и регулирование мощности.
- **9.** Теплоносители и рабочие тела. {беседа} (2ч.)[3,4] Требования к теплоносителям. Свойства и характеристики по применяемости теплоносителей (температурные диапазоны использования, плотность, применяемые скорости, коэффициенты теплоотдачи и теплопередачи по видам теплоносителей). Паровые котлы, I-р диаграмма, влияние давления на распределение нагрузки между поверхностями нагрева, изменение трубной системы и схемы циркуляции.
- 10. Технико-экономический анализ цикла Калины. {лекция с разбором конкретных ситуаций} (2ч.)[5,7] Энергосбережение, особенности цикла Калины. Бинарные растворы, закон Рауля, изменение температуры по мере испарения легкого компонента. Т-х диаграммы для бинарной смеси при различных давлениях. Основное оборудование и технологическая схема цикла Калины. Изображение циклов Ренкина и Калины в Т-ѕ диаграмме. Примеры применения цикла Калины.
- **11. Закон Гука.** {дискуссия} (2ч.)[3,4,5,7] Анализ видов деформаций, ползучести. Концентраторы напряжений, трубы и камеры, оптимизация сверлений, укрепление отверстий накаткой и др. Разрушение трещинами. Тепловое расширение, расчет, контроль, реперы и схемы закрепления котлов и топок.

Тепловое расширение и закон Гука. Появление напряжений при тепловом расширении тел, расчет напряжения и тепловые деформации. Примеры неисправностей, пластинчатый ВП, рельсы

- **12. Технико-экономический анализ тепловой изоляции. {беседа} (2ч.)[3,4]** Теплоизоляция, модель теплопроводности пористого тела О. Кришера. Теплопроводность вдоль и поперек волокон и реальных материалов. Базальты и цеолиты, их свойства и применение. Обмуровочные и теплоизоляционные материалы из базальта. Теплоизолирующие краски, вакуумная (космическая) теплоизоляция.
- 13. Технико-экономический анализ зеленой энергетики. {лекция с разбором конкретных ситуаций} (2ч.)[3,4,7] СО2 нейтральное топливо, зеленая энергетика. Сравнение объёмов угля и древесного топлива. Виды машин для измельчения древесины, устройство и работа шредеров. Принципы измельчения КДО, рубильные машины, дробилки и шредеры (ломают, режут, но не удар и истирание, которые размочаливают волокнистую структуру древ. отходов). Подготовка, подача и обращение с кородревесными отходами. Пеллеты, комплексы по производству пеллет. Роль лигнина в составе древесины при производстве пеллет, достоинства пеллет как особого вида зеленого топлива.
- 14. Технико-экономический анализ псевдоожиженного сжигания. {беседа} Упаковка (24.)[4,7]Явление псевдоожижения. шаровых координационное число, порозность упаковки, обеспечивающая текучесть слоя Аналогия поведения кипящего слоя (КС) и жидкости. псевдоожижения p(w). Типы частиц (A, B, C и Д). Критическая скорость, скорость уноса. Восходящее движение газа через слой частиц, появление течения, пузырей. Потенциальные модель потенциального течения взаимопроникающих сред, теория Дэвидсона. Характер циркуляции облаков газа относительно всплывающего пузыря в кипящем слое в зависимости от его Шлейф и перенос частиц пузырями, их коалесценция и рост. циркуляции и пульсации давления в КС. Самоорганизация организации подачи топлива в КС. Определение высоты КС и её поддержание.

Практические занятия (84ч.)

- **1.** Промышленная революция. Теоретические основы рабочих процессов паровых машин.(4ч.)[3,4,6,7] Промышленная революция, роль инвестиций в развитии инноваций, роль законов о частной собственности, торговля, наемный труд, борьба с монополиями, финансовые рынки. Испания и Португалия, награбленное золото и инновации, что полезнее для развития.
- 2. Анализ патентов и полезных моделей. (8ч.) [4,7] Разработки и патенты на изобретения и полезные модели, авторские права на объекты интеллектуальной собственности. Критерии патентоспособности: новизна, промышленная применимость, изобретательский уровень. Формула изобретения, независимый и зависимый пункты формулы, объем правовой охраны, предоставляемой патентом. Структура заявки на патент. Международная патентная классификация—

- иерархическая система патентной классификации, средство для классификации патентных документов (патенты и авторские свидетельства на изобретения, промышленные образцы, полезные модели).
- **3. Анализ нестандартных задач в теплотехнике. (4ч.) [4,7]** ТРИЗ Теория Решения Изобретательских Задач. ТРИЗ практический инструмент для поиска решений нестандартных задач в бизнесе, технике и педагогике, благодаря которому разрешаются казалось бы нерешаемые проблемы. История ТРИЗ. Этапы формализации и разработки, выявление противоречий, понятие об идеальном устройстве, котел как устройство, проект реального устройства.
- **4. Теплообмен в топке.(8ч.)[4,7]** Лучистый теплообмен, особая роль и методы повышения эффективности воздухоподогевателей, влияние на топочный процесс и КПД котла. Влияние системы подготовки топлива на работу топки.
- **5. Требования к теплоносителям.**(8ч.)[4,7] Теплоносители и рабочие тела. Свойства и характеристики по применяемости теплоносителей (температурные диапазоны использования, плотность, применяемые скорости, коэффициенты теплоотдачи и теплопередачи по видам теплоносителей). Паровые котлы, І-р диаграмма, влияние давления на распределение нагрузки между поверхностями нагрева, изменение трубной системы и схемы циркуляции.
- **6. Анализ свойств воды как теплоносителя.** (8ч.)[3,4,7] Вода как теплоноситель, особые свойства воды. Применение и свойства этиленгликоля и антифризов на его основе. Силтерм 800 и другие высокотемпературные теплоносители. Пример, воздухонагревательная установка на антифризе «Хот-Блад», особые требование к котельному и насосному оборудованию.
- 7. Виды твердых топлив.(10ч.)[3,4,5,6] Склады угля и обращение на ТЭЦ с углем. Организация хранения, подачи, предварительной подготовки, дробления и помола угля. Упаковка шаровых частиц и координационное число, порозность упаковки. Углы откоса, движение слоя насыпной массы и при действии на слой сверху нагрузки. Твердые топлива, склад топлива,. Движение угля в бункере, образование сводов и меры противодействия, вибрация. Опорожнение и заполнение бункера, установка датчиков уровня. Мельничные системы.
- 8. Технико-экономический анализ применения водоугольного (ВУТ).(10ч.)[3,4,5] Мокрый помол, подготовка и применение водоугольного топлива (ВУТ). Достоинства ВУТ. Упаковка шаровых частиц и координационное число, порозность упаковки, обеспечивающая текучесть ВУТ. Достоинства ВУТ. Оформить эскизные, технические и рабочие проекты установки для получения ВУТ. Описать принцип действия устройства **установки** И ДЛЯ транспортирования угля, производства метанола, полипропилена, другой продукции и в энергетике Китая.
- **9.** Принципы измельчения коро-древесных отходов (КДО). Теоретические основы данных рабочих процессов.(8ч.)[3,4,5,7] Описать принцип действия и устройства установки измельчения КДО, рубильные машины, дробилки и шредеры. Технико-экономический анализ установки для подготовки, подачи и обращение с кородревесными отходами. Пеллеты, комплексы по производству пеллет. Проектные и технические решения по производству пеллет для объектов

энергетического машиностроения. Роль лигнина в составе древесины при производстве пеллет, достоинства пеллет как особого вида зеленого топлива.

- 10. Описание принципа действия и устройства конструкции складов топлива с подвижным полом. (4ч.) [3,4,5,7] Конструкции складов топлива с подвижным полом, с верхним выравниванием и выгрузкой и в виде силоса с ворошащим устройством. Форма бункеров, опорожнение и заполнение бункера, установка датчиков уровня. Оформить эскизные, технические и рабочие проекты склада топлива. Выполнить расчет по проекту паровой котельной работающей на кородревесных отходах.
- 11. Виды СО2 нейтральных топлив.(8ч.)[3,4,6,7] Экологическая эффективность использования отходов. Ликвидация свалок и потоков горючих отходов растительного типа, древесных и других с их использованием в качестве топлива позволяет решить важные проблемы безопасной жизнедеятельности общества (пожары, выбросы метана гниения). Достоинства биотоплив, зелёные тарифы. Дешевый и эффективный способ решения проблем защиты окружающей среды.
- 12. Балластные составляющие.(4ч.)[3,4,5,6,7] Зола, состав золы, возгонка соединений калия и других щелочных металлов при сжигании твердых топлив. Зола, состав золы, температура плавления компонентов и их эвтектик. Формирование прочных отложений золы в котле из легкоплавких эвтектик при сжигании лузги подсолнечника. Модель формирования отложений золы в котле при сжигании лузги подсолнечника. Меры снижения отложений золы.

Самостоятельная работа (176ч.)

- **1. Подготовка к лекционным занятиям.(20ч.)[3,4,6,7]** Работа с литературой. Проработка учебников, учебных пособий.
- **2.** Подготовка к практическим занятиям.(28ч.)[3,4,6] Работа с литературой. Интернет. Информационные базы данных.
- **3. Подготовка к коллоквиумам.**(**52ч.**)[**3,4,6,7**] Работа с литературой. Интернет. Информационные базы данных.
- **4.** Подготовка к защите и защита курсовой работы.(40ч.)[1,2,3] Работа с теоретическим материалом.
- **5. Подготовка к экзамену.(36ч.)[3,4,6,7]** Работа с литературой. Интернет. Информационные базы данных.

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам: Лань, Университетская библиотека он-лайн, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

1. Меняев К.В., Таймасов Д.Р. Построение характеристик центробежного

- насоса. Методические указания к выполнению лабораторной работы по курсу «Механика жидкости и газа», «Водогрейные котлы и котлы-утилизаторы» для студентов направления «Энергетическое машиностроение» / Меняев К.В., Таймасов Д.Р. Алт. гос. техн. ун-т.им. И.И. Ползунова. Барнаул: Изд-во АлтГТУ, 2017— 28 с. Режим доступа: http://elib.altstu.ru/eum/download/kirs/Menyaev CentrNasos met2017.pdf
- 2. Меняев К.В., Гладких А.А., Жуков Е. Б., Хуторненко С. Н., Пузырев Е. М. СТЕНДОВЫЕ АЭРОДИНАМИЧЕСКИЕ ИСПЫТАНИЯ ЦЕНТРОБЕЖНЫХ ВЕНТИЛЯТОРОВ. Методические указания к выполнению лабораторной работы по курсу «Наладка и эксплуатация паровых котлов» для студентов направления 13.03.03 «Энергетическое машиностроение»/ Жуков Е. Б., Хуторненко С. Н. Пузырев Е. М.; Алт. гос. техн. ун-т. им. И.И. Ползунова. Барнаул: Изд-во АлтГТУ, 2021 20 с. Режим доступа: http://elib.altstu.ru/eum/download/kirs/Menyaev SAICV lr mu.pdf
- 3. Жуков Е.Б., Меняев К. В. Водогрейные котлы: Учебное пособие / Алт. гос. техн. ун-т им. И.И. Ползунова.- Барнаул : Изд-во АлтГТУ, 2019.- 150 с. Режим доступа: http://elib.altstu.ru/eum/download/kirs/Zhukov_VodogrKotl_up.pdf

6. Перечень учебной литературы

- 6.1. Основная литература
- 4. Фурсов И. Д. Конструирование и тепловой расчет паровых котлов: учебное пособие / И. Д. Фурсов; Алт. гос. техн. ун-т им. И. И. Ползунова. 4-е изд. перераб. и доп. Барнаул: Изд-во АлтГТУ, 2016. 297 с. Режим доступа: http://elib.altstu.ru/eum/download/kirs/Fursov-kon.pdf
- 5. Меняев К.В. Балансовые испытания водогрейного котла. Методи-ческие лабораторной работе студентов направления ДЛЯ 13.03.03 «Энергетическое машиностроение» / Алт. гос. техн. ун-т им. И.И. Ползунова -Изд-во АлтГТУ, 2015. 48 Режим c. доступа: http://elib.altstu.ru/eum/download/kirs/Menyaev bivk.pdf

6.2. Дополнительная литература

6. Меняев К.В. Методы испытания углей. / Меняев К.В. Учебное пособие для студентов направления 13.03.03 «Энергетическое машино-строение» /Алт. гос. техн. ун-т им. И.И.Ползунова.- Барнаул: Изд-во Ал-тГТУ, 2013.- 64 с. Гриф НМС АлтГТУ Режим доступа: http://elib.altstu.ru/eum/download/kirs/Menjaev-miu.pdf

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

7. Описание водогрейных котлов и паровых агрегатов для энергетической отрасли. СибЭМ-БКЗ. Режим доступа: http://www.sibem-bkz.com/ru/boiler-equipment/

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

Фонд оценочных материалов (ФОМ) по дисциплине представлен в приложении А.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационно-образовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение	
1	LibreOffice	
2	Windows	
3	Антивирус Kaspersky	

№пп	Используемые профессиональные базы данных и информационные		
	справочные системы		
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным		
	ресурсам" для студентов и преподавателей; каталог ссылок на образовательные интернет-ресурсы (http://Window.edu.ru)		
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к		
	фондам российских библиотек. Содержит коллекции оцифрованных документов		
	(как открытого доступа, так и ограниченных авторским правом), а также каталог		
	изданий, хранящихся в библиотеках России. (http://нэб.рф/)		
3	Электронная база ГОСТов (http://1000gost.ru/list/1-0.htm)		

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы
учебные аудитории для проведения учебных занятий
помещения для самостоятельной работы

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов

и лиц с ограниченными возможностями здоровья».