Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ФСТ

С.В. Ананьин

Рабочая программа дисциплины

Код и наименование дисциплины: **Б1.В.8** «Современные методы исследования материалов»

Код и наименование направления подготовки (специальности): 16.03.01

Техническая физика

Направленность (профиль, специализация): Физико-химическое

материаловедение

Статус дисциплины: часть, формируемая участниками образовательных

отношений

Форма обучения: очная

Статус	Должность	И.О. Фамилия
Разработал	доцент	В.В. Романенко
	Зав. кафедрой «Ф»	С.Л. Кустов
Согласовал	руководитель направленности (профиля) программы	М.Д. Старостенков

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Содержание компетенции	Индикатор	Содержание индикатора
ПК-2	Способен проводить экспериментальные исследования	ПК-2.1	Описывает технические возможности измерительной аппаратуры
	карактеристик физических процессов и явлений с использованием современных средств измерений и обработки результатов	ПК-2.2	Способен использовать современные средства измерений для решения задач технической физики
ПК-3	Способен формировать аналитические отчеты по результатам расчетно-экспериментальных работ и оформлять научно-техническую документацию	ПК-3.1	Описывает выполненные расчетно- экспериментальные работы и их результаты
		ПК-3.2	Выполняет анализ полученных результатов
		ПК-3.3	Способен оформлять отчеты и презентации, готовить доклады с помощью современных информационных технологий
ПК-5	Способен к организации метрологического обеспечения технологических процессов и использованию технических средств, методов контроля физико-технических объектов, изделий и материалов	ПК-5.2	Способен применять технические средства для изучения свойств физикотехнических объектов, изделий и материалов

2. Место дисциплины в структуре образовательной программы

Дисциплины (практики), предшествующие изучению дисциплины, результаты освоения которых необходимы для освоения данной	Измерительная техника, Материаловедение, Метрология и физико-технические измерения, Физика конденсированного состояния, Экспериментальные методы исследования
дисциплины. Дисциплины (практики), для которых результаты освоения данной дисциплины будут необходимы, как входные знания, умения и владения для их изучения.	Выпускная квалификационная работа, Механические и физические свойства материалов, Новые материалы и технологии, Физико-химическое материаловедение наноструктурных материалов

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 4 / 144 Форма промежуточной аттестации: Экзамен

	Виды занятий, их трудоемкость (час.)			Объем контактной	
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
очная	32	0	16	96	57

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: очная

Семестр: 6

Лекционные занятия (32ч.)

- 1. Изучение характеристик физических процессов и явлений, физикотехнических свойств материалов методами оптической микроскопии {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5,8,9,10] Классическая оптическая спектроскопия. Современная оптическая спектроскопия.
- 2. Изучение характеристик физических процессов и явлений, физикотехнических свойств материалов методами оптической микроскопии(2ч.)[3,4,5,8,9,10] Суперлинзы. Конфокальная микроскопия.
- **3.** Изучение характеристик физических процессов и явлений, физикотехнических свойств материалов методами рентгеноспектрального анализа элементного состава вещества(2ч.)[3,4,5,8,9,10] Рентгеновские спектры. Прохождение рентгеновских лучей через вещество. Методы рентгеноспектрального анализа.
- 4. Изучение характеристик физических процессов и явлений, физикотехнических свойств материалов методами рентгеноспектрального анализа элементного состава вещества(2ч.)[3,4,5,8,9,10] Рентгенорадиометрический метод. Количественный рентгеноспектральный анализ.
- **5.** Изучение характеристик физических процессов и явлений, физикотехнических свойств материалов методами рентгеноспектрального анализа элементного состава вещества(2ч.)[3,4,5,8,9,10] Рентгеновские эмиссионные спектры. Рентгеноспектральный микроанализ (РСМА). Рентгеновская дефектоскопия.
- 6. Изучение характеристик физических процессов и явлений, физикотехнических свойств материалов методами рентгеноспектрального анализа элементного состава вещества(2ч.)[3,4,5,8,9,10] Рентгенофлуоресцентный анализ. Преломление рентгеновских лучей. Рентгеновская оптика.
- 7. Изучение характеристик физических процессов и явлений, физикотехнических свойств и состава материалов методами электронной спектроскопии и методом вторичной ионной масс-спектрометрии {лекция с

- **разбором конкретных ситуаций** (2ч.)[3,4,5,8,9,10] Методы электронной спектроскопии. Просвечивающая электронная микроскопия. Сканирующая электронная микроскопия.
- 8. Изучение характеристик физических процессов и явлений, физикосвойств И состава материалов технических методами электронной спектроскопии методом вторичной ионной массспектрометрии(2ч.)[3,4,5,8,9,10] Физические основы электронной ожеспектроскопии. Оже - электронные и рентгеновские фотоэлектронные спектры.
- 9. Изучение характеристик физических процессов и явлений, физикотехнических свойств и состава материалов методами электронной спектроскопии и методом вторичной ионной массспектрометрии(2ч.)[3,4,5,8,9,10] Исследование состава материалов методом вторичной ионной масс спектрометрии (ВИМС).
- 10. Изучение характеристик физических процессов и явлений, физикотехнических свойств и структуры материалов дифракционными методами {лекция с разбором конкретных ситуаций} (2ч.)[3,4,5,8,9,10] Теоретические основы дифракционных методов исследования структуры материалов. Методы получения дифракционной картины.
- 11. Изучение характеристик физических процессов и явлений, физикотехнических свойств и структуры материалов дифракционными методами(2ч.)[3,4,5,8,9,10] Рентгеновские методы исследования структуры материалов. Электронография. Метод темного поля. Метод светлого поля.
- 12. Изучение характеристик физических процессов и явлений, физикотехнических свойств и структуры материалов дифракционными методами(2ч.)[3,4,5,8,9,10] Нейтронография. Основные области применения нейтронографии.
- 13. Изучение характеристик физических процессов и явлений, физикогеометрических технических свойств. методов анализа параметров структуры материалов. Применение технических средств для изучения физико-технических объектов. изделий материалов(2ч.)[3,4,5,8,9,10] Физические основы растровой электронной микроскопии. Устройство и работа растрового электронного микроскопа.
- 14. Изучение характеристик физических процессов и явлений, физикотехнических свойств, методов анализа геометрических параметров структуры материалов(2ч.)[3,4,5,8,9,10] Подготовка объектов для исследований и особые требования к ним. Технические возможности растрового электронного микроскопа. Области применения растрового электронного микроскопа. Применение технических средств для изучения свойств физико-технических объектов, изделий и материалов
- 15. Изучение характеристик физических процессов и явлений, физикотехнических свойств, методов анализа геометрических параметров структуры материалов. Применение технических средств для изучения свойств физико-технических объектов, изделий и материалов(2ч.)[3,4,5,8,9,10] Сканирующая зондовая микроскопия.

16. Изучение характеристик физических процессов и явлений, физикотехнических свойств, методов анализа геометрических параметров структуры материалов. Применение технических средств для изучения свойств физико-технических объектов, изделий и материалов(2ч.)[3,4,5,8,9,10] Атомно-силовая микроскопия.

Практические занятия (16ч.)

- 1. Применение методов рентгеноспектрального анализа элементного состава вещества при выполнении расчетно экспериментальных работ по исследованию материалов(2ч.)[2,6,7,8,9] Определение элементного состава исследуемого материала путем сравнения рентгеновских спектров.
- 2. Применение методов электронной спектроскопии при выполнении расчетно экспериментальных работ по исследованию материалов(2ч.)[2,6,7,8,9] Определение характеристик кристаллической решетки кристаллического алмаза по электронномикроскопическим изображениям высокого разрешения
- **3.** Применение методов электронной микроскопии при выполнении расчетно экспериментальных работ по исследованию материалов(2ч.)[2,6,7,8,9] Определение параметров решетки и межатомного расстояния исследуемого природного кристалла по электронным микрофотографиям
- **4. Контрольная работа {«мозговой штурм»} (2ч.)[2,3,4,5,6,7,8,9]** Контрольная работа \mathbb{N}_{2} 1
- **5.** Применение методов электронной спектроскопии при выполнении расчетно экспериментальных работ по исследованию дефектной структуры материалов(2ч.)[2,6,7,8,9] Определение дефектной структуры кристаллического алмаза по электронномикроскопическим изображениям высокого разрешения
- **6.** Применение методов рентгеноструктурного анализа при выполнении расчетно экспериментальных работ по исследованию материалов(2ч.)[2,6,7,8,9] Определение характеристик тонкой структуры кристаллического алмаза методом рентгеноструктурного анализа.
- 7. Подготовка докладов, применение методов атомно-силовой микроскопии при выполнении расчетно экспериментальных работ по исследованию материалов(2ч.)[2,6,7,8,9] Исследование атомной структуры углеродной пленки 8. Контрольная работа {«мозговой штурм»} (2ч.)[2,3,4,5,6,7,8,9] Контрольная

Самостоятельная работа (96ч.)

работа № 2

- 1. Изучение теоретического материала (с элементами электронного обучения и дистанционных образовательных технологий) (9ч.)[3,4,5,8,9,10] Работа с конспектами лекций, учебниками и учебными пособиями
- **2. Подготовка к практическим занятиям(10ч.)[2,6,7,8]** Работа с конспектом лекций, учебными пособиями по решению задач.

- **3.** Подготовка к контрольным работам(6ч.)[2,3,4,5,6,7,8,9,10] Работа с конспектами, учебниками и учебными пособиями
- **4.** Выполнение курсовой работы (КР) {с элементами электронного обучения и дистанционных образовательных технологий} (35ч.)[1,2,3,4,5,6,7,8,9,10,11,12,13] Работа с конспектом лекций, учебными пособиями по решению задач. Подготовка отчета по КР
- **5. Подготовка к экзамену(36ч.)[1,2,3,4,5,6,7,8,9,10,11,12,13]** Работа с конспектом лекций, учебниками и учебными пособиями.

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам: Лань, Университетская библиотека он-лайн, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

1. Старостенков М.Д., Черных Е.В., Романенко В.В. Методические указания к выполнению курсовой работы по дисциплине «Современные методы исследования материалов и процессов»/ Алт. госуд. технич. ун-т им. И.И. Ползунова. Барнаул, 2016. – 25 с.

Режим доступа: http://elib.altstu.ru/eum/download/of/Romanenko smimp kurs.pdf

2. Демьянов Б.Ф., Романенко В.В. Учебно-методическое пособие по решению задач по дисциплине «Современные методы исследования материалов» [Электронный ресурс]: Учебно-методическое пособие.— Электрон. дан.—Барнаул: АлтГТУ, 2020.

Режим доступа: http://elib.altstu.ru/eum/download/of/Romanenko SMIM ump.pdf

6. Перечень учебной литературы

- 6.1. Основная литература
- 3. Головин Ю.И. Основы нанотехнологий. М.: Машиностроение, 2012, 656 c.

Режим доступа: https://e.lanbook.com/book/5793

- 4. Кульков В.Г. Физика конденсированного состояния в электротехническом материаловедении. Издательство "Лань", 2017, 272 с. Режим доступа: https://e.lanbook.com/book/90003
- 5. Богодухов С. И., Козик Е. С. Материаловедение: учебник для вузов. Издательство "Машиностроение", 2020, 54 с. Режим доступа: https://e.lanbook.com/book/151079?category=2459

6.2. Дополнительная литература

6. Мишина Е.Д., Шерстюк Н.Э., Евдокимов А.А., Вальднер В.О. Методы получения и исследования наноматериалов и наноструктур. Лабораторный

практикум по нанотехнологиям: учебное пособие. — М.: Издательство «Бином. Лаборатория знаний», 2017, 187 с. Режим доступа: https://e.lanbook.com/book/94113

7. Алексеев Г.В., Бриденко И.И., Вологжанина С.А. Виртуальный лабораторный практикум по курсу «Материаловедение»: Издательство "Лань" - 2013, 208 с.

Режим доступа: https://e.lanbook.com/reader/book/47615/#30

- 8. Панова Т. В. Современные методы исследования вещества: электронная и оптическая микроскопия: учебное пособие. Омский государственный университет им. Ф.М. Достоевского, 2016, 80 с.
- Режим доступа: http://biblioclub.ru/index.php?page=book_red&id=563044
- 9. Газенаур Е. Г., Кузьмина Л. В., Крашенинин В. И. Методы исследования материалов: учебное пособие. Кемеровский государственный университет, 2013. 336 с.

Режим доступа: http://biblioclub.ru/index.php?page=book_red&id=232447

10. Марголин В. И. Жабрев В. А. Лукьянов Г. Н. Тупик В. А. Введение в нанотехнологию.- СПб.: Лань, 2012, 464 с. Режим доступа: https://e.lanbook.com/book/4310

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 11. http://nano.msu.ru/education/materials/courses/IV/expmethods
- 12. http://www.microsystems.ru/files/publ/601.htm
- 13. http://www.nano.yar.ru

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям $\Phi \Gamma OC$, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

Фонд оценочных материалов (ФОМ) по дисциплине представлен в приложении А.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационно-образовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение	
1	Acrobat Reader	
2	LibreOffice	
3	Windows	
4	Антивирус Kaspersky	

№пп	Используемые профессиональные базы данных и информационные	
	справочные системы	
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным	
	ресурсам" для студентов и преподавателей; каталог ссылок на образовательные	
	интернет-ресурсы (http://Window.edu.ru)	
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к	
	фондам российских библиотек. Содержит коллекции оцифрованных документов	
	(как открытого доступа, так и ограниченных авторским правом), а также каталог	
	изданий, хранящихся в библиотеках России. (http://нэб.рф/)	

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы
помещения для самостоятельной работы
учебные аудитории для проведения учебных занятий

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».