Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

И.о. декана ФСТ С.Л. Кустов

Рабочая программа дисциплины

Код и наименование дисциплины: **Б1.О.17** «Физика»

Код и наименование направления подготовки (специальности): 27.03.05

Инноватика

Направленность (профиль, специализация): Управление инновационными

проектами

Статус дисциплины: обязательная часть

Форма обучения: очная

Статус	Должность	И.О. Фамилия	
Разработал	доцент	Н.М. Гурова	
	Зав. кафедрой «Ф»	С.Л. Кустов	
Согласовал	руководитель направленности (профиля) программы	В.В. Черканов	

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Содержание компетенции	Индикатор	дикатор Содержание индикатора	
ОПК-1	Способен анализировать задачи профессиональной деятельности на основе положений, законов и методов в области математики, естественных и технических наук	ОПК-1.1	Демонстрирует знания законов и методов математических, естественных и технических наук	

2. Место дисциплины в структуре образовательной программы

Дисциплины (практики)	, Математика, Механика
предшествующие изученин	
дисциплины, результати	I
освоения которых необходими	I
для освоения данно	í
дисциплины.	
Дисциплины (практики), дл которых результаты освоени данной дисциплины буду	Электротехника и электроника
необходимы, как входны	
знания, умения и владения дл	I
их изучения.	

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 10 / 360

	Виды занятий, их трудоемкость (час.)				Объем контактной
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
очная	48	32	64	216	171

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: очная

Семестр: 2

Объем дисциплины в семестре з.е. /час: 5 / 180

Форма промежуточной аттестации: Зачет

Виды занятий, их трудоемкость (час.)			Объем контактной работы	
Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	обучающегося с преподавателем (час)
16	16	32	116	81

Лекционные занятия (16ч.)

1. Изучение естественнонаучных положений, законов и методов в физической механике. Глава 1. Кинематика поступательного и вращательного движения(2ч.)[8,11,12,18] Введение: физика в системе естественных наук. Общая структура и задачи дисциплины «Физика».

Понятие состояния в классической механике. Основные кинематические характеристики прямолинейного и криволинейного движения: скорость и ускорение. Нормальное и тангенциальное ускорение. Кинематика вращательного движения: угловая скорость и угловое ускорение, их связь с линейной скоростью и ускорением.

- 2. Изучение естественнонаучных положений, законов и методов в физической механике. Глава 2. Динамика поступательного и вращательного движения(2ч.)[8,11,12,18] Инерциальные системы отсчета. Законы Ньютона. Уравнение движения материальной точки. Силы в механике. Центр масс механической системы, закон движения центра масс. Момент силы. Уравнение моментов. Момент импульса материальной точки и механической системы. Момент инерции. Теорема Штейнера. Кинетическая энергия вращающегося твердого тела. Основное уравнение динамики вращательного движения твердого тела с закрепленной осью вращения.
- 3. Изучение естественнонаучных положений, законов и методов в физической механике. Глава 3. Работа и энергия. Законы сохранения в механике {лекция с разбором конкретных ситуаций} (2ч.)[8,11,12,18] Работа силы. Работа и потенциальная энергия. Консервативные и неконсервативные силы. Работа и кинетическая энергия. Закон сохранения полной механической энергии в поле потенциальных сил. Связь между силой и потенциальной энергией. Столкновения тел. Закон сохранения импульса. Неупругое и абсолютно упругое столкновение. Закон сохранения момента импульса.
- 4. Изучение естественнонаучных положений, законов методов молекулярной физике. Глава 4. Молекулярно-кинетическая идеальных газов(2ч.)[8,11,12,18] Формирование способности анализировать задачи профессиональной деятельности на основе положений законов и методов в области математики естественных и технических наук. Статистический и термодинамический подходы. Основное уравнение молекулярно-кинетической теории идеального газа. Уравнение состояния идеального газа. Распределение Максвелла для скорости молекул идеального газа. Наиболее вероятная, средняя и скорости. Распределение Больцмана, среднеквадратичная барометрическая формула. Явления переноса. Диффузия, теплопроводность, внутреннее трение.
- 5. Изучение естественнонаучных положений, законов и методов в термодинамике. Глава 5. Основы термодинамики. {лекция с разбором

- конкретных ситуаций (2ч.)[8,11,12,18] Термодинамическое равновесие и температура. Квазистатические процессы. Первое начало термодинамики. Теплоемкость. Уравнение Майера. Связь теплоемкости идеального газа с числом степеней свободы молекул. Обратимые и необратимые процессы. Второе и третье начала термодинамики. Коэффициент полезного действия тепловых машин. Цикл Карно и его коэффициент полезного действия. Энтропия.
- Изучение естественнонаучных положений, законов электродинамике. Глава 6. Электростатика(2ч.)[9,11,13,18] Электрический Напряженность Кулона. свойства. Закон электростатического поля. Силовые линии. Эквипотенциальные поверхности. Потенциальная энергия заряда в электростатическом поле. Энергия системы Принцип суперпозиции. Поле диполя. Связь напряженности потенциала. Работа сил электростатического Циркуляция поля. напряженности. Теорема Гаусса.
- 7. Изучение естественнонаучных положений, законов и методов в электродинамике. Глава 7. Диэлектрики и проводники в электрическом поле.(2ч.)[9,11,13,18] Поляризация диэлектриков. Электрическое поле диполя. Вектор электрического смещения (электрической индукции). Диэлектрическая проницаемость вещества. Условия на границе двух диэлектриков.
- Равновесие зарядов в проводнике. Эквипотенциальные поверхности и силовые линии электростатического поля между проводниками. Электростатическая защита. Емкость проводников и конденсаторов. Энергия заряженного конденсатора. Объемная плотность энергии электростатического поля.
- 8. Изучение естественнонаучных положений, законов и методов в электродинамике. Глава 8. Постоянный электрический ток. {с элементами электронного обучения и дистанционных образовательных технологий} (2ч.)[9,11,13,18] Сила и плотность тока. Уравнение непрерывности для плотности тока. Закон Ома в интегральной и дифференциальной формах. Закон Джоуля-Ленца. Электродвижущая сила источника тока. Правила Кирхгофа. Классическая теория электропроводности металлов (теория Друде-Лоренца). Работа выхода электронов из металла. Термоэлектронная эмиссия. Ток в различных средах.

Практические занятия (32ч.)

- 1. Применение естественнонаучных законов и методов теоретического исследования при обработке результатов экспериментальных измерений.(2ч.)[12,15,16,17,18,19] Планирование и выполнение типовых экспериментальных исследований по заданной методике. Обработка результатов при проведении прямых и косвенных измерений
- 2. Применение естественнонаучных законов и методов теоретического исследования при решении задач по теме "Кинематика"(2ч.)[12,15,16,17,18,19] Кинематика поступательного и вращательного движения
- 3. Применение естественнонаучных законов и методов теоретического

- **исследования при решении задач по теме "Динамика поступательного** движения"(2ч.)[12,15,16,17,18,19] Динамика поступательного движения материальной точки. Силы в механике.
- 4. Применение естественнонаучных законов и методов теоретического исследования при решении задач по теме "Динамика вращательного движения твердого тела"(2ч.)[12,15,16,17,18,19] Уравнение динамики вращательного движения. Закон сохранения момента импульса.
- **5.** Применение естественнонаучных законов и методов теоретического исследования при решении задач по теме "Законы сохранения"(2ч.)[12,15,16,17,18,19] Работа, мощность и энергия. Законы сохранения механической энергии, импульса и момента импульса.
- **6. Контрольная работа № 1(2ч.)[8,12,15,16,17,18,19]** Контрольная работа № 1. Модуль "Механика".
- 7. Применение естественнонаучных законов и методов теоретического исследования при решении задач по теме "Молекулярная физика"(2ч.)[12,15,16,17,18,19] Основы МКТ. Уравнение состояния идеального газа. Распределения Максвелла и Больцмана.
- 8. Применение естественнонаучных законов и методов теоретического исследования при решении задач по по теме "Термодинамика"(2ч.)[12,15,16,17,18,19] Первое и второе начало термодинамики. Теплоемкость газов.
- 9. Применение естественнонаучных законов и методов теоретического исследования при решении задач по по теме "Термодинамика"(2ч.)[12,15,16,17,18,19] Энтропия. КПД тепловых машин.
- **10. Контрольная работа № 2(2ч.)[8,12,15,16,17,18,19]** Контрольная работа № 2. Модуль "Молекулярная физика и термодинамика".
- 11. Применение естественнонаучных законов и методов теоретического исследования при решении задач по теме "Электростатическое поле в вакууме"(2ч.)[13,15,16,17,18,19] Электростатика. Принцип суперпозиции электростатических полей.
- 12. Применение естественнонаучных законов и методов теоретического исследования при решении задач по теме "Электростатическое поле в вакууме"(2ч.)[13,15,16,17,18,19] Электростатика. Применение теоремы Гаусса к расчету электростатических полей
- 13. Применение естественнонаучных законов и методов теоретического исследования при решении задач по теме "Диэлектрики и проводники в электростатическом поле" (2ч.) [13,15,16,17,18,19] Электростатическое поле в диэлектрике. Электроемкость конденсатора. Энергия электростатического поля
- **14.** Применение естественнонаучных законов и методов теоретического исследования при решении задач по теме "Постоянный электрический ток"(2ч.)[13,15,16,17,18,19] Законы Ома. Расчет электрических цепей постоянного тока.
- 15. Применение естественнонаучных законов и методов теоретического исследования при решении задач по теме "Постоянный электрический

ток"(2ч.)[13,15,16,17,18,19] Расчет электрических цепей постоянного тока. Правила Кирхгофа. Закон Джоуля - Ленца.

16. Контрольная работа № 3(2ч.)[9,13,15,16,17,18,19] Контрольная работа № 3. Модуль "Электричество".

Лабораторные работы (16ч.)

- 1. Лабораторная работа №1. Проведение экспериментальных исследований по заданной методике {работа в малых группах} (4ч.)[3,8,11,12] Изучение законов поступательного движения тел с помощью машины Атвуда. (Фронтальная работа)
- 2. Лабораторная работа №2. Проведение экспериментальных исследований по заданной методике {работа в малых группах} (4ч.)[3,8,11,12] Изучение законов вращательного движения с помощью маятника Обербека. (Фронтальная работа)
- 3. Лабораторная работа №3. Проведение экспериментальных исследований по заданной методике {работа в малых группах} (2ч.)[3,8,11,12] Выявление умения демонстрировать знания законов и методов математических, естественных и технических наук. Определение отношения теплоемкостей воздуха при постоянном давлении и объеме методом Клемана и Дезорма
- **4.** Лабораторная работа №4. Проведение экспериментальных исследований по заданной методике {работа в малых группах} (2ч.)[3,8,11,12] Определение приращения энтропии при плавлении олова
- 5. Лабораторная работа №5. Проведение экспериментальных исследований по заданной методике {работа в малых группах} (2ч.)[4,9,11,13] Изучение закона Ома. Определение удельного

сопротивления проводника. (Фронтальная работа)

6. Лабораторная работа №6. Проведение экспериментальных исследований по заданной методике {работа в малых группах} (2ч.)[4,9,11,13] Лабораторная работа выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам.

№23. Определение ЭДС методом компенсации.

№24.Определение сопротивления проводников мостиком Уитстона.

Самостоятельная работа (116ч.)

- **1. Изучение теоретического материала(14ч.)[1,2,8,9,11,12,13,18,19]** Работа с конспектом лекций, учебниками и учебными пособиями
- **2.** Подготовка к практическим занятиям и лабораторным работам(28ч.)[3,8,9,11,12,13,15,16,17,18,19] Работа с конспектом лекций, учебными пособиями по решению задач. Подготовка отчетов по лабораторным работам
- **3.** Подготовка к контрольным работам(12ч.)[8,9,12,13,15,16,17,18] Работа с

конспектами, учебниками и учебными пособиями

- **4.** Подготовка к тестированию по заданным темам(18ч.)[1,2,8,9,11,12,13,15] Работа с конспектом лекций, учебниками и учебными пособиями
- **5. Выполнение расчетного задания (Р3)(24ч.)[6,8,9,12,13,15,16,17]** Работа с конспектом лекций, учебными пособиями по решению задач. Подготовка отчета по Р3
- **6. Подготовка к зачету(20ч.)[1,2,8,9,11,12,13,15,16,17,18]** Работа с конспектом лекций, учебниками и учебными пособиями

Семестр: 3

Объем дисциплины в семестре з.е. /час: 5 / 180 Форма промежуточной аттестации: Экзамен

Виды занятий, их трудоемкость (час.)			Объем контактной работы	
Лекции	Лабораторные работы Практические занятия Самостоятельная работа		обучающегося с преподавателем (час)	
32	16	32	100	90

Лекционные занятия (32ч.)

- 1. Изучение естественнонаучных положений, законов и методов в электродинамике. Глава 9. Магнитное поле в вакууме {лекция с разбором конкретных ситуаций} (2ч.)[9,11,13,18] Магнитное взаимодействие постоянных токов. Вектор магнитной индукции и напряженности магнитного поля. Принцип суперпозиции магнитных полей. Закон Био-Савара-Лапласа. Сила Лоренца и сила Ампера. Теорема Гаусса для магнитного поля в вакууме. Циркуляция вектора магнитной индукции. Движение заряженных частиц в электрических и магнитных полях.
- **2.** Изучение естественнонаучных положений, законов и методов в электродинамике. Глава 10. Электромагнитная индукция(2ч.)[9,11,13,18] Явление электромагнитной индукции. Закон Фарадея. Правило Ленца. Вращение рамки в магнитном поле. Самоиндукция. Энергия и плотность энергии магнитного поля. Взаимная индукция. Трансформатор.
- **3.** Изучение естественнонаучных положений, законов и методов в электродинамике. Глава 11. Магнитные свойства вещества(2ч.)[9,11,13,18] Молекулярные токи. Вектор намагниченности. Закон полного тока для магнитного поля в веществе. Граничные условия на поверхности раздела двух магнетиков. Магнитная проницаемость. Диа-, пара- и ферромагнетики. Природа ферромагнетизма.
- **4.** Изучение естественнонаучных положений, законов и методов в электродинамике. Глава 12. Теория Максвелла для электромагнитного поля(2ч.)[9,11,13,18] Вихревое электрическое поле. Ток смещения. Система уравнений Максвелла в интегральной и дифференциальной форме.
- **5.** Изучение естественнонаучных положений, законов и методов. Глава 13. Механические колебания {лекция с разбором конкретных ситуаций} (2ч.)[9,11,13,18] Виды колебаний, их характеристики. Кинематика гармонических

колебаний. Гармонический осциллятор. Сложение колебаний. Фигуры Лиссажу.

- **6.** Изучение естественнонаучных положений, законов и методов. Глава 14. Электромагнитные колебания {лекция с разбором конкретных ситуаций} (2ч.)[9,11,13,18] Идеальный гармонический осциллятор. Свободные, затухающие и вынужденные электромагнитные колебания. Переменный электрический ток. Мощность переменного тока. Метод векторных диаграмм.
- 7. Изучение естественнонаучных положений, законов и методов. Глава 15. Волны (2ч.)[9,11,13,18] Волны в упругой среде. Уравнение плоской и сферической волны. Стоячие волны. Волновое уравнение. Звуковые волны. Электромагнитные волны. Энергия и импульс электромагнитного поля. Вектор Умова-Пойнтинга.
- 8. Изучение естественнонаучных положений, законов и методов в оптике. Глава 16. Геометрическая оптика. Глава 17. Интерференция света(2ч.)[9,11,14,18] Принцип Ферма. Законы геометрической оптики. Полное отражение и его применение в технике. Линзы и зеркала.
- Интерференция монохроматических волн. Когерентность. Условия интерференционных максимумов и минимумов. Методы наблюдения интерференции. Интерференция в тонких пленках. Кольца Ньютона.
- 9. Изучение естественнонаучных положений, законов и методов в волновой оптике. Глава 18. Дифракция света {лекция с разбором конкретных ситуаций} (2ч.)[9,11,14,18] Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция Френеля и Фраунгофера на простейших преградах. Дифракционная решетка.
- 10. Изучение естественнонаучных положений, законов и методов. Глава 19. Поляризация света. Глава 20. Взаимодействие света с веществом(2ч.)[9,11,14,18] Формирование способности анализировать задачи профессиональной деятельности на основе положений, законов и методов в области математики, естественных и технических наук. Получение и анализ линейно-поляризованного света. Закон Малюса. Закон Брюстера. Двойное лучепреломление. Искусственная оптическая анизотропия. Вращение плоскости поляризации. Дисперсия света. Электронная теория дисперсии. Нормальная и аномальная дисперсии. Поглощение и рассеяние света.
- 11. Изучение естественнонаучных положений, законов и методов. Глава 21. Квантовая оптика(2ч.)[10,11,14,18] Тепловое излучение. Абсолютно черное тело. Законы Кирхгофа, Стефана-Больцмана и Вина. Формула Релея-Джинса. Гипотеза Планка. Квантовое объяснение законов теплового излучения. Формула Планка.
- **12.** Изучение естественнонаучных положений, законов и методов. Глава 21. Квантовая оптика(2ч.)[10,11,14,18] Фотоны. Фотоэффект. Законы внешнего фотоэффекта. Уравнение Эйнштейна для фотоэффекта. Давление света. Эффект Комптона. Корпускулярно-волновой дуализм света.
- **13.** Изучение естественнонаучных положений, законов и методов. Глава **22. Теория атома Бора(2ч.)[10,11,14,18]** Опыты Резерфорда по рассеянию альфачастиц. Планетарная модель атома. Формула Бальмера. Линейчатые спектры

атомов. Постулаты Бора. Опыт Франка-Герца.

- 14. Изучение естественнонаучных положений, законов и методов. Глава 23. Элементы квантовой механики {лекция с разбором конкретных ситуаций} (2ч.)[10,11,14,18] Гипотеза де Бройля. Дифракция микрочастиц. Принцип неопределенности Гейзенберга. Волновая функция, ее статистическое толкование. Уравнение Шредингера. Стационарное уравнение Шредингера для атома водорода. Опыт Штерна и Герлаха. Квантовые числа. Правила отбора для квантовых переходов.
- **15.** Изучение естественнонаучных положений, законов и методов. Глава **24.** Элементы физики атомов и молекул(2ч.)[10,11,14,18] Спонтанное и индуцированное излучение. Особенности лазерного излучения. Принцип тождественности микрочастиц. Симметричные и антисимметричные волновые функции. Бозоны и фермионы. Принцип Паули. Квантовые статистические распределения.
- 16. Изучение естественнонаучных положений, законов и методов. Глава 25. Элементы физики атомного ядра и элементарных частиц(2ч.)[10,11,14,18] Состав и характеристики атомного ядра. Свойства ядерных сил. Радиоактивность. Виды радиоактивного излучения. Ядерные реакции. Использование ядерной энергии. Фундаментальные взаимодействия и основные классы элементарных частиц.

Практические занятия (32ч.)

- 1. Применение естественнонаучных законов и методов теоретического исследования при решении задач по теме «Магнитное поле»(2ч.)[13,15,16,17,18,19] Применение закона Био-Савара-Лапласа и принципа суперпозиции к расчету магнитных полей в вакууме.
- **2.** Применение естественнонаучных законов и методов теоретического исследования при решении задач по теме «Магнитное поле»(2ч.)[13,15,16,17,18,19] Силовое действие магнитного поля: сила Лоренца и сила Ампера. Движение заряженных частиц в магнитном поле.
- **3.** Применение естественнонаучных законов и методов теоретического исследования при решении задач по теме «Электромагнитная индукция»(2ч.)[13,15,16,17,18,19] Закон Фарадея. Правило Ленца. Вращение рамки в магнитном поле. Самоиндукция. Энергия и плотность энергии магнитного поля.
- **4.** Применение естественнонаучных законов и методов теоретического исследования при решении задач по темам «Магнитное поле в веществе», «Теория Максвелла»(2ч.)[13,15,16,17,18,19] Закон полного тока для магнитного поля в веществе. Граничные условия на поверхности раздела двух магнетиков. Магнитная проницаемость. Теория Максвелла.
- **5. Контрольная работа № 1(2ч.)[9,13,15,16,17,18,19]** Контрольная работа № 1. Модуль «Магнетизм».
- 6. Применение естественнонаучных законов и методов теоретического

- **исследования при решении задач по теме «Гармонические колебания»(2ч.)[13,15,16,17,18,19]** Свободные, затухающие и вынужденные колебания. Сложение колебаний.
- 7. Применение естественнонаучных законов и методов теоретического исследования при решении задач по теме «Волны»(2ч.)[13,15,16,17,18,19] Механические и электромагнитные волны.
- 8. Применение естественнонаучных законов и методов теоретического исследования при решении задач по теме «Оптика»(2ч.)[14,15,16,17,18,19] Геометрическая оптика. Интерференция света.
- 9. Применение естественнонаучных законов и методов теоретического исследования при решении задач по теме «Волновая оптика»(2ч.)[14,15,16,17,18,19] Дифракция света.
- 10. Применение естественнонаучных законов и методов теоретического исследования при решении задач по теме «Волновая оптика»(2ч.)[14,15,16,17,18,19] Поляризация света. Дисперсия света.
- **11. Контрольная работа № 2(2ч.)**[**10,13,14,15,16,17,18,19**] Контрольная работа № 2. Модуль «Колебания и волны. Волновая оптика».
- 12. Применение естественнонаучных законов и методов теоретического исследования при решении задач по теме «Квантовые свойства света»(2ч.)[14,15,16,17,18,19] Тепловое излучение. Фотоэффект. Давление света. Эффект Комптона.
- 13. Применение естественнонаучных законов и методов теоретического исследования при решении задач по теме «Атом Бора»(2ч.)[14,15,16,17,18,19] Планетарная модель атома. Формула Бальмера. Постулаты Бора.
- 14. Применение естественнонаучных законов и методов теоретического исследования при решении задач по теме «Элементы квантовой механики»(2ч.)[14,15,16,17,18,19] Выявление умения демонстрировать знания законов и методов математических, естественных и технических наук. Принцип неопределенности Гейзенберга. Стационарное уравнение Шредингера для атома водорода. Правила отбора для квантовых переходов.
- 15. Применение естественнонаучных законов и методов теоретического исследования при решении задач по теме «Элементы физики атомного ядра»(2ч.)[14,15,16,17,18,19] Радиоактивность. Ядерные реакции.
- **16. Контрольная работа № 3(2ч.)[10,14,15,16,17,18,19]** Контрольная работа № 3. Модуль «Квантовая оптика. Атомная и ядерная физика».

Лабораторные работы (16ч.)

1. Лабораторные работа №1. Проведение экспериментальных исследований по заданной методике {работа в малых группах} (3ч.)[4,9,11,13] Лабораторная работа выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам. №26. Определение индукции магнитного поля на оси кругового тока. № 27.Определение горизонтальной составляющей магнитного поля Земли тангенсгальванометром.

- **2.** Лабораторная работа №2. Проведение экспериментальных исследований по заданной методике {работа в малых группах} (2ч.)[4,9,11,13] Лабораторная работа выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам. №31. Силы в магнитном поле. Измерение индукции магнитного поля электродинамометром. №42.Определение удельного заряда электрона.
- **3.** Лабораторная работа №3. Проведение экспериментальных исследований по заданной методике {работа в малых группах} (3ч.)[4,9,11,13] Лабораторная работа выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам. №38. Исследование магнитного поля на оси соленоида. №39.Определение кривой намагничения железа.
- **4.** Лабораторная работа №4. Проведение экспериментальных исследований по заданной методике {работа в малых группах} (3ч.)[5,9,10,11,14] Лабораторная работа выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам. №7. Изучение интерференции света с помощью лазера. № 8.Определение радиуса кривизны плосковыпуклой линзы методом наблюдения колец Ньютона. №10. Изучение дифракции Фраунгофера с помощью лазера. № 11.Определение длины световой волны с помощью дифракционной решетки.
- **5.** Лабораторная работа №6. Проведение экспериментальных исследований по заданной методике {работа в малых группах} (2ч.)[5,9,10,11,14] Лабораторная работа выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам. №12. Изучение поляризации света. Проверка закона Малюса. №13.Поляризация света при отражении от диэлектрика. Изучение закона Брюстера. №16 Изучение дисперсии света.
- **6.** Лабораторная работа №8. Проведение экспериментальных исследований по заданной методике {работа в малых группах} (3ч.)[5,10,11,14] Лабораторная работа выполняются звеньями (по 2-3 студента) по разработанным маршрутным картам. №18. Изучение законов теплового излучения. Определение постоянной Стефана-Больцмана. №19.Изучение законов фотоэффекта. Определение работы выхода фотоэлектронов. №20.Изучение спектра атома водорода. Определение постоянных Ридберга и Планка.

Самостоятельная работа (100ч.)

- **1.** Изучение теоретического материала(11ч.)[2,9,10,11,13,14,18,19] Работа с конспектами лекций, учебниками и учебными пособиями.
- **2.** Подготовка к практическим занятиям и лабораторным работам(15ч.)[4,5,9,10,11,13,14,15,16,17,18,19] Работа с конспектом лекций, учебными пособиями по решению задач. Подготовка отчетов по лабораторным работам.
- **3.** Подготовка к контрольным работам(12ч.)[9,10,13,14,15,16,17,18] Работа с конспектами, учебниками и учебными пособиями.
- **4.** Подготовка к тестированию по отдельным темам(18ч.)[2,9,10,11,13,15] Работа с конспектом лекций, учебниками и учебными пособиями
- 5. Выполнение индивидуального домашнего задания

- **(ИДЗ)(8ч.)**[6,9,10,11,13,14,15,16,17,18] Работа с конспектом лекций, учебными пособиями по решению задач. Подготовка отчета по ИДЗ.
- **6. Подготовка к экзамену(36ч.)[2,9,10,11,13,14,15,16,17,18]** Работа с конспектом лекций, учебниками и учебными пособиями

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам: Лань, Университетская библиотека он-лайн, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

- 1. Кустов С.Л. Лекции по физике. Механика. Молекулярная физика и термодинамика. Учебное пособие по курсу физики для студентов инженернотехнических специальностей очной и очно заочной формы обучения.- Барнаул: изд-во АлтГТУ, 2010. -130 с.,Прямая ссылка: http://elib.altstu.ru/eum/download/of/Kustov_lec_1.pdf
- 2. Кустов С.Л. Лекции по физике. Электричество и магнетизм. Учебное пособие по курсу физики для студентов очной и заочной формы обучения.-Барнаул: изд-во АлтГТУ, 2013. -124 с., Прямая ссылка: http://elib.altstu.ru/eum/download/of/Kustov EM.pdf
- 3. Лабораторные работы по физике. Часть І. Механика. Молекулярная физика и термодинамика. Учебное пособие и методические указания по выполнению лабораторных работ для студентов очной формы обучения. / Разработали и
- составили: Андрухова О.В., Гурова Н.М., Жуковская Т.М., Кирста Ю.Б., Кустов С.Л., Науман Л.В., Пацева Ю.В., Романенко В.В., Старостенкова Н.А., Черных Е.В. Барнаул: Изд-во АлтГТУ. 2019. 46 с.

Прямая ссылка:

 $http://elib.altstu.ru/eum/download/of/Andruhova_PhisLabsPt1_ump.pdf$

- 4. Лабораторные работы по физике. Часть II. Электричество и магнетизм. Учебное пособие и методические указания по выполнению лабораторных работ для студентов всех форм обучения. / Разработали и составили: Гурова Н. М., Кустов С. Л., Пацева Ю. В., Романенко В. В., Черных Е. В. Барнаул: Изд-во АлтГТУ. 2019. 84 с. Прямая ссылка: http://elib.altstu.ru/eum/download/of/Andruhova PhisLabsPt2 ump.pdf
- 5. Лабораторные работы по физике. Часть III. Колебания и волны. Оптика, атомная и ядерная физика. Учебное пособие и методические указания по выполнению лабораторных работ для студентов очной формы обучения. / Разработали и составили: Л.Н. Агейкова, А.В. Векман, Н.М. Гурова, С.Л. Кустов, В.В. Романенко, Е.В. Черных, В.Л. Орлов, М.А. Гумиров Барнаул: Изд-во АлтГТУ. 2019. 78 с. Прямая ссылка: http://elib.altstu.ru/eum/download/of/Andruhova_PhisLabsPt3_ump.pdf

- 6. Пацева Ю.В., Черных Е.В, Науман Л.В., Жуковская Т.М. Учебнометодическое пособие по выполнению расчетного задания по физике. Часть ІІ. Магнетизм. Колебания и волны. Оптика. Атомная и ядерная физика: для студентов всех форм обучения. Барнаул: Изд-во
- АлтГТУ, 2020. 181 с. Прямая ссылка: http://elib.altstu.ru/eum/download/of/Paceva FisPtIIMKVOAYaF rz mu.pdf
- 7. Жуковская Т.М., Науман Л.В., Пацева Ю.В. Учебно-методическое пособие по

выполнению расчетного задания по физике. Часть І. Механика. Молекулярная физика и термодинамика. Электричество [Электронный ресурс]:

Учебно-методическое пособие.— Электрон. дан.— Барнаул: АлтГТУ, 2020.— Режим доступа:

http://elib.altstu.ru/eum/download/of/Zhukovskaya Physics1 ump.pdf

6. Перечень учебной литературы

- 6.1. Основная литература
- 8. Савельев, И.В. Курс общей физики (в 3 тт.). Том 1. Механика. Молекулярная физика. [Электронный ресурс] СПб. : Лань, 2019. 436 с. Доступ из ЭБС «Лань».Режим доступа: https://e.lanbook.com/book/113944
- 9. Савельев, И.В. Курс общей физики. В 3 т. Том 2. Электричество и магнетизм. Волны. Оптика [Электронный ресурс] : учебное пособие / И.В. Савельев. Электрон. дан. Санкт-Петербург : Лань, 2019. 500 с. Режим доступа: https://e.lanbook.com/book/113945.
- 10. Савельев, И.В. Курс общей физики. В 3 т. Том 3. Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц [Электронный ресурс] : учебное пособие / И.В. Савельев. Электрон. дан. Санкт-Петербург : Лань, 2018. 320 с. Режим доступа: https://e.lanbook.com/book/106893.
- 11. Грабовский, Р.И. Курс физики [Электронный ресурс] : учебное пособие / Р.И. Грабовский. Электрон. дан. Санкт-Петербург : Лань, 2012. 608 с. Режим доступа: https://e.lanbook.com/book/3178.

6.2. Дополнительная литература

- 12. Кузнецов С.И. Курс физики с примерами решения задач. Часть І. Механика. Молекулярная физика. Термодинамика. 2014.- 464 с. Доступ из ЭБС «Лань». Режим доступа: https://e.lanbook.com/book/42189
- 13. Кузнецов С.И. Курс физики с примерами решения задач. Часть II. Электричество и магнетизм. Колебания и волны. Изд-во: «Лань», 2014. 416 с. Доступ из ЭБС «Лань». Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=53682
- 14. Кузнецов С.И. Курс физики с примерами решения задач. Часть III. Оптика. Основы атомной физики и квантовой механики. Физика атомного ядра и элементарных частиц. Изд-во: «Лань», 2014. 336 с. Доступ из ЭБС «Лань». Режим

доступа: http://e.lanbook.com/books/element.php?pl1 id=53685

- 15. Калашников, Н.П. Общая физика. Сборник заданий и руководство к решению задач [Электронный ресурс] : учебное пособие / Н.П. Калашников, С.С. Муравьев-Смирнов. Электрон. дан. Санкт-Петербург : Лань, 2019. 524 с. Режим доступа: https://e.lanbook.com/book/111197.
- 16. Гладков, Л.Л. Физика. Практикум по решению задач. [Электронный ресурс] / Л.Л. Гладков, А.О. Зеневич, Ж.П. Лагутина, Т.В. Мацуганова. Электрон. дан. СПб. : Лань, 2014. 288 с. Доступ из ЭБС «Лань». Режим доступа: http://e.lanbook.com/books/element.php?pl1 id=41013
- 17. Савельев И.В. Сборник вопросов и задач по общей физике: Учебное пособие. 6-е изд., стер. СПб.: Издательство «Лань», 2018. 288 с. Доступ из ЭБС «Лань». Режим доступа: https://e.lanbook.com/book/103195

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 18. http://nuclphys.sinp.msu.ru/
- 19. https://wolfram.com/

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

Фонд оценочных материалов (ФОМ) по дисциплине представлен в приложении А.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационнообразовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение		
1	LibreOffice		
2	Windows		
3	Антивирус Kaspersky		

№пп	Используемые профессиональные базы данных и информационные			
	справочные системы			
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным			
	ресурсам" для студентов и преподавателей; каталог ссылок на образовательные			
	интернет-ресурсы (http://Window.edu.ru)			
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к			
	фондам российских библиотек. Содержит коллекции оцифрованных документов			
	(как открытого доступа, так и ограниченных авторским правом), а также каталог			
	изданий, хранящихся в библиотеках России. (http://нэб.рф/)			

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы
учебные аудитории для проведения учебных занятий
помещения для самостоятельной работы

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».