Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ФИТ А.С. Авдеев

Рабочая программа дисциплины

Код и наименование дисциплины: **Б1.Б.20** «Математические методы обработки данных»

Код и наименование направления подготовки (специальности): 16.03.01

Техническая физика

Направленность (профиль, специализация): Физико-химическое

материаловедение

Статус дисциплины: обязательная часть (базовая)

Форма обучения: очная

Статус	Должность	И.О. Фамилия
Разработал	доцент	В.М. Кайгородова
	Зав. кафедрой «ВМ»	Г.М. Полетаев
Согласовал	руководитель направленности (профиля) программы	М.Д. Старостенков

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной

программы

Код		В результате изучения дисциплины обучающиеся должны:		
компетенции из УП и этап её формирования	Содержание компетенции	знать	уметь	владеть
ОПК-2	способностью применять методы математического анализа, моделирования, оптимизации и статистики для решения задач, возникающих в ходе профессиональной деятельности	методы теоретического и экспериментального исследования объектов, процессов, явлений, в то числе знать основные понятия теории вероятности и математической статистики, необходимые для обработки информации и анализа данных.	проводить эксперименты по заданной методике и анализировать их результаты, в том числе решать основные задачи теории вероятности и математической статистики	навыками применения методов экспериментального исследования в профессиональной деятельности

2. Место дисциплины в структуре образовательной программы

Дисциплины (практики)	Математика
предшествующие изучению	
дисциплины, результаты	
освоения которых необходимы	
для освоения данной	
дисциплины.	
Дисциплины (практики), для	
которых результаты освоения	исследовательская работа
данной дисциплины будут	
необходимы, как входные	
знания, умения и владения для	
их изучения.	

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 5 / 180 Форма промежуточной аттестации: Экзамен

	Виды занятий, их трудоемкость (час.)			Объем контактной	
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
очная	34	0	34	112	79

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: очная

Семестр: 4

Лекционные занятия (34ч.)

- 1. Методы математического анализа, моделирования, оптимизации и статистики для решения профессиональных задач. Случайные события: основные понятия. Основные формулы комбинаторики. {лекция с разбором конкретных ситуаций} (2ч.)[1,2]
- 2. Методы математического анализа, моделирования, оптимизации и статистики для решения профессиональных задач. Определения вероятности случайного события: классическое, аксиоматическое, геометрическое, статистическое. Основные понятия теории вероятности для обработки информации и анализа данных. (2ч.) [1,2]
- 3. Условная вероятность. Теоремы сложения и умножения вероятностей.(2ч.)[1,2]
- 4. Формула полной вероятности. Формула Байеса.(2ч.)[1,2]
- 5. Схема Бернулли. Формула Пуассона. Локальная и интегральная теоремы Муавра-Лапласса.(2ч.)[1,2]
- 6. Случайные величины: основные понятия.(2ч.)[1,2]
- 7. Дискретные случайные величины. Законы распределения (2ч.) [1,2]
- 8. Непрерывные случайные величины. Функция распределения, плотность распределения.(2ч.)[1,2]
- 9. Числовые характеристики случайных величин. Умение провести эксперимент, провести анализ полученных результатов. (2ч.)[1,2]
- 10. Биномиальное распределение, распределение Пуассона, геометрическое, гипергеометрическое, равномерное, показательное и нормальное распределения. {работа в малых группах} (2ч.)[1,2]
- 11. Закон больших чисел.(2ч.)[2]
- 12. Методы математического анализа, моделирования, оптимизации и статистики для решения профессиональных задач. Основные понятия математической статистики для обработки информации и анализа данных. Генеральная и выборочная совокупности. Способы формирования

выборок.(2ч.)[2]

- 13. Статистические оценки параметров распределения. Точечные оценки. Несмещенность, состоятельность, эффективность. Интервальные оценки.(2ч.)[2]
- 14. Проверка статистических гипотез.(2ч.)[2]
- 15. Анализ зависимостей между переменными величинами. Умение анализировать полученные результаты, решать основные задачи теории вероятности и математической статистики.(2ч.)[2]
- 16. Элементы корреляционного анализа.(2ч.)[2]
- 17. Элементы регрессионного анализа.(2ч.)[2]

Практические занятия (34ч.)

- 1. Случайные события. Множество элементарных исходов. Операции над множествами. Основные формулы комбинаторики. (2ч.)[1,2]
- 2. Классическое определение вероятности. Геометрическое определение вероятности.(2ч.)[1,3]
- 3. Условная вероятность. Теоремы сложения и умножения вероятностей.(2ч.)[1,3]
- 4. Формула полной вероятности. Формула Байеса.(2ч.)[1,3]
- 5. Схема Бернулли. Формула Пуассона. Локальная и интегральная теоремы Муавра-Лапласса.(2ч.)[1,3]
- 6. Контрольная работа №1 "Случайные события"(2ч.)[1,2,3]
- 7. Дискретные случайные величины. Законы распределения(2ч.)[1,3]
- 8. Непрерывные случайные величины. Функция распределения, плотность распределения.(2ч.)[1,3]
- 9. Числовые характеристики случайных величин.(2ч.)[1,3]
- 10. Биномиальное распределение, распределение Пуассона, геометрическое, гипергеометрическое, равномерное, показательное и нормальное распределения. Применение основных понятий теории вероятности для решения задач. {работа в малых группах} (2ч.)[1,3]
- 11. Контрольная работа №2 "Случайные величины"(2ч.)[1,2,3]
- 12. Основные понятия математической статистики для обработки информации и анализа данных, проведения эксперимента. Генеральная и выборочная совокупности. Формирование выборки. {работа в малых группах} (2ч.)[2]
- 13. Полигон и гистограмма. Эмпирическая функция распределения. Точечные оценки.(2ч.)[2]
- 14. Проверка гипотезы о нормальном распределении. Умение анализировать результаты экспериментальных данных. (2ч.)[2]
- 15. Корреляционная таблица. Поле корреляции.(2ч.)[2]
- 16. Выборочный коэффициент корреляции. Проверка гипотезы о значимости выборочного коэффициент корреляции.(2ч.)[2]
- 17. Эмпирические линии регрессии. Прямые линии регрессии. Применение

основных понятий теории вероятности и математической статистики для анализа результатов эксперимента и для решения основных профессиональных задач.(2ч.)[2]

Самостоятельная работа (112ч.)

- 1. Подготовка к лекциям(17ч.)[1,2]
- 2. Подготовка к практически занятиям(11ч.)[1,2,3]
- 3. Подготовка к контрольным работам(12ч.)[1,2,3]
- 4. Выполнение расчетного задания(36ч.)[2]
- **5.** Подготовка к экзамену(36ч.)[1,2,4]

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам: Лань, Университетская библиотека он-лайн, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

1. Зайцев В.П., Киркинский А.С. Математика, часть 3 [Электронный ресурс]: Учебное пособие.— Электрон. дан.— Барнаул: АлтГТУ, 2014.— Режим доступа: http://elib.altstu.ru/eum/download/vm/Zajtev-Kir3.pdf, авторизованный

6. Перечень учебной литературы

- 6.1. Основная литература
- 2. Зайцев В. П. Теория вероятностей и математическая статистика [Электронный ресурс] : учебное пособие [для студентов АлтГТУ по направлениям и специальностям в области техники и технологии] / В. П. Зайцев ; Алт. гос. техн. ун-т им. И. И. Ползунова. (pdf-файл : 3,44 Мбайта) и Электрон. текстовые дан. Барнаул : Изд-во АлтГТУ, 2014. 268 с. Режим доступа: http://new.elib.altstu.ru/eum/download/vm/Zaytev-tvims.pdf

6.2. Дополнительная литература

3. Горлач, Борис Алексеевич. Теория вероятностей и математическая статистика [Электронный ресурс] : учебное пособие / Б. А. Горлач. - Электрон. текстовые дан. - Санкт-Петербург [и др.] : Лань, 2013. - 320 с. - (Учебники для вузов. Специальная литература). - Режим доступа: https://e.lanbook.com/book/4864#book name

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

4. Информационная система «Единое окно доступа к образовательным

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

Фонд оценочных материалов (ФОМ) по дисциплине представлен в приложении А.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационнообразовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение	
1	Microsoft Office	
2	MATLAB R2010b	
3	Acrobat Reader	
4	AutoCAD	
5	LibreOffice	
6	Windows	
7	Антивирус Kaspersky	

№пп	Используемые профессиональные базы данных и информационные		
	справочные системы		
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным		
	ресурсам" для студентов и преподавателей; каталог ссылок на образовательные		
	интернет-ресурсы (http://Window.edu.ru)		
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к		
	фондам российских библиотек. Содержит коллекции оцифрованных документов		
	(как открытого доступа, так и ограниченных авторским правом), а также каталог		
	изданий, хранящихся в библиотеках России. (http://нэб.рф/)		

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы
учебные аудитории для проведения занятий лекционного типа
учебные аудитории для проведения занятий семинарского типа
учебные аудитории для проведения текущего контроля и промежуточной аттестации

Наименование специальных помещений и помещений для самостоятельной работы

учебные аудитории для проведения групповых и индивидуальных консультаций помещения для самостоятельной работы

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».