Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

СОГЛАСОВАНО

Декан ФИТ А.С. Авдеев

Рабочая программа дисциплины

Код и наименование дисциплины: **Б1.В.8** «Оптоинформатика»

Код и наименование направления подготовки (специальности): 12.03.01 Приборостроение

Направленность (профиль, специализация): **Информационно-измерительная** техника, технологии и интеллектуальные системы

Статус дисциплины: часть, формируемая участниками образовательных отношений

Форма обучения: очная

Статус	Должность	И.О. Фамилия
Разработал	профессор	С.П. Пронин
	Зав. кафедрой «ИТ»	А.Г. Зрюмова
Согласовал	руководитель направленности	А.Г. Зрюмова
	(профиля) программы	

г. Барнаул

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций

Компетенция	Содержание компетенции	Индикатор	Содержание индикатора
ПК-5	Способность выполнять математическое моделирование процессов и объектов на базе стандартных пакетов автоматизированного	ПК-5.2	Выполняет математическое моделирование процессов и объектов на базе стандартных пакетов для исследований
	проектирования и исследований		

2. Место дисциплины в структуре образовательной программы

Дисциплины (практики),	Введение в компьютерное моделирование,	
предшествующие изучению	Информатика, Математика, Физика, Физические	
дисциплины, результаты	основы получения информации	
освоения которых необходимы		
для освоения данной		
дисциплины.		
Дисциплины (практики), для	Измерительные системы на основе мобильных	
которых результаты освоения	устройств, Интерфейсы информационных процессов, Система сбора и обработки данных	
данной дисциплины будут		
необходимы, как входные		
знания, умения и владения для		
их изучения.		

3. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающегося с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающегося

Общий объем дисциплины в з.е. /час: 4 / 144 Форма промежуточной аттестации: Экзамен

	Виды занятий, их трудоемкость (час.)			Объем контактной	
Форма обучения	Лекции	Лабораторные работы	Практические занятия	Самостоятельная работа	работы обучающегося с преподавателем (час)
очная	16	32	0	96	57

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Форма обучения: очная

Семестр: 5

Лекционные занятия (16ч.)

- 1. Введение в дисциплину «Оптоинформатика» {разработка проекта} (2ч.)[1,3,7,8] Определение «Оптоинформатика». Классификация предмета «Оптоинформатика». Перспективы развития волоконно-оптических систем передачи, обработки, хранения и отображения информации. Закон Снеллиуса. Моделирование критического угла падения света на поверхность раздела двух сред. Типы оптических волокон. Моделирование прохождения лучей в оптическом волокне. Дисперсия. Числовая апертура. Моделирование процессов и объектов на базе стандартных пакетов.
- **2.** Передача и прием информации на основе фотонов {беседа} (2ч.)[1,3,4] Модель волоконно-оптической системы передачи. Состав и функционирование блоков волоконно-оптической системы передачи. Основы передачи сигнала по оптическому волокну. Затухание сигнала в оптическом волокне. Окна прозрачности. Коэффициент затухания.
- **3.** Передача и прием информации на основе фотонов {беседа} (2ч.)[1,3] Модели источников излучения оптического сигнала: светоизлучающие диоды (СИД) и лазерные диоды (ЛД). Основные характеристики и особенности применения источников излучения. Модели диаграммы направленности, угловой расходимости, длины волны излучения источника света, спектральной характеристики. Модель лазерного источника света. Зависимость мощности излучения лазера от тока накачки. Скорость передачи информации.
- **4.** Обработка информации на основе фотонов {разработка проекта} (2ч.)[1,6] Моделирование аналоговых оптических вычислителей. Модель оптического процессора, выполняющего операцию умножения вектора строки на матрицу. Моделирование сигналов в пространственной и частотной областях. Преобразование Фурье. Моделирование амплитудного спектра от щелевой диафрагмы.
- **5.** Обработка информации на основе фотонов {разработка проекта} (2ч.)[1,6] Моделирование оптических систем, выполняющие операцию свертки двух функций. Связь между входным и выходным сигналами линейной системы. Моделирование импульсной характеристики системы (функция рассеяния точки, функция Грина, аппаратная функция). Моделирование системы в частотной области: спектры сигналов, частотная характеристика, частотно-контрастная характеристика (ЧКХ) оптической системы.
- 6. Обработка информации на основе фотонов {разработка проекта} (2ч.)[1,6] Моделирование выходного сигнала на основе свертки пространственной гармоники с функцией, характеризующей оптическую систему. Изменения выходного сигнала от соотношений периода пространственной гармоники и размера окна оптической системы. Понятие фильтрации сигнала. Модели передаточной характеристики оптической системы и амплитудного спектра пространственной гармоники.
- **7. Хранение информации на основе фотонов {беседа} (2ч.)[1]** Модель оптической системы записи и считывания данных. Носители оптической памяти:

оптические диски, кристаллы. Оптическая память. Виды оптических дисков. Моделирование плотности записи информации на оптический диск. Плотность записи CD- и DVD- дисков. Модель голографической записи оптических сигналов. Магнитооптическая память. Объемная оптическая память. Оптическая память на кристаллах.

8. Отображение информации на основе фотонов {беседа} (2ч.)[1] ЭЛТ-мониторы. ЖК-мониторы. Плазменные дисплеи. Явление электролюминесценции. Светоизлучающие диоды. Светодиодные табло и дисплеи. ОLED — дисплеи. Дисплей с электронной эмиссией на основе поверхностной проводимости (SED-дисплей). Лазерно-фосфорный дисплей (LPD-дисплей).

Лабораторные работы (32ч.)

света на экране;

диаметре оптического волокна;

лаоораторные раооты (32ч.)
1. Волоконно-оптический кабель {разработка проекта} (8ч.)[1,2,3,5] Цель –
Моделирование в среде Mathcad изменений критического угла падения луча
света в оптическом волокне в зависимости от показателя преломления оболочки.
Задачи работы:
$\square\square$ визуально изучить различных конструкций оптического кабеля и его
структуры;
\square \square изучить формулу Снеллиуса как физические основы получения информации с
ходе оптического луча и получить инженерную формулу расчета критического
угла падения, при котором световой луч остается в сердцевине оптического
волокна;
□ пизучить основные команды программной среды Mathcad для выполнения
лабораторной работы;
$\square\square$ определить диапазон изменения показателя преломления оболочки при
заданном показателе преломления сердцевины;
□ смоделировать и исследовать в среде Mathcad диапазон изменения
критического угла падения в зависимости от показателя преломления оболочки
для ступенчатого волоконного световода с заданным показателем преломления
сердцевины. График зависимости критического угла выразить в градусной мере.
2. Измерение диаметра оптического волокна {разработка проекта} (8ч.)[2,5]
Цель – Моделирование измерения диаметра оптического волокна по
дифракционной картине.
Задачи работы:
\square \square изучить структурную схему устройства измерения диаметра оптического
волокна;
$\square \square$ с помощь лазерного источника света получить дифракционную картину от
оптического волокна и сделать визуальную оценку структуры распределения

□ □изучить интеграл Кирхгофа как физические основы получения информации о

□□получить инженерную формулу метода измерения диаметра оптического
волокна по измеренному расстоянию между соседними минимумами;
□ с помощью программной среды Mathcad смоделировать и исследовать
функцию дифракции от оптического волокна: написать программу, определить
координаты и относительную интенсивность первого максимума; определить
соотношение интенсивностей главного и первого максимума в дифракционной
картине.
□ с помощью программной среды Mathcad смоделировать процесс оптимальной
установки границы ПЗС-фотоприемника относительно главного максимума в
дифракционной картине с учетом эффекта блюминга ПЗС-фотоприемника.
Написать программу расчета координат оптимальной установки;
□ □используя среду Mathcad, выполнить моделирование измерения диаметра
оптического волокна при заданном расстоянии между минимумами в
дифракционной картине, заданном расстоянии между оптическим волокном и
плоскостью измерения, заданной длине волны лазерного источника света.
3. Фурье-преобразование от гармонической функции {разработка проекта}
(8ч.)[1,2,5,6] Цель – Моделирование изменений параметров в амплитудном
спектре от дискретной гармонической функции в зависимости от изменения ее
периода при заданном времени наблюдения.
Задачи работы:
□ □изучить формулу интеграла Фурье от непериодической функции и написать
Фурье-преобразование от гармонической функции;
□ □изучить основные команды для выполнения лабораторной работы в среде
Mathcad;
□ разработать алгоритм дискретизации и получить дискретный сигнал в виде
гармонической функции;
□ □отразить на графике дискретную гармонику;
□□осуществить Фурье-преобразование дискретной гармоники и отразить ее на
графике;
□ приготовить таблицу для записи экспериментальных исследований по
заданному образцу;
□ присследовать изменение параметров в амплитудном спектре гармонического
сигнала в зависимости от периода гармоники и интервала времени наблюдения
гармоники;
□□определить причину возникновения утечки (растекания) спектра и признаки,
по которым определяется утечка спектра.
4. Фурье-преобразование от периодической функции {разработка проекта}
(8ч.)[1,2,5,6] Цель – Моделирование изменений параметров в амплитудном
спектре от дискретной сложной периодической функции.
Задачи работы:
□ разработать алгоритм дискретизации и получить дискретный сигнал от
сложной периодической функции в виде двух гармоник с различными

amining gamn in tactoramn,
□ □ отразить на графике дискретную сложную периодическую функцию;
□ □осуществить Фурье-преобразование дискретной сложной периодической
функции и отразить ее на графике;
□ приготовить таблицу для записи экспериментальных исследований по
заданному образцу;
□ □исследовать изменение параметров в амплитудном спектре дискретной
сложной периодической функции в зависимости от периодов гармоник, частот
гармоник и интервала времени наблюдения сложной периодической функции;
□ □ определить причину возникновения утечки (растекания) амплитудного
спектра и признаки, по которым определяется утечка спектра.

Самостоятельная работа (96ч.)

амплитупами и пастотами.

- **1. Теоретическая подготовка по лекционному материалу.(5ч.)[1]** Теоретический материал по лекциям 1,2
- **2.** Оформление отчета по лабораторной работе 1. Подготовка к защите.(10ч.)[2,3,5] Результаты моделирования в среде Mathcad изменений критического угла падения в зависимости от показателя преломления оболочки для ступенчатого волоконного световода с заданным показателем преломления сердцевины.
- **3.** Теоретическая подготовка по лекционному материалу.(5ч.)[1] Теоретический материал по лекциям 3,4
- **4.** Оформление отчета по лабораторной работе **2.** Подготовка к защите.(10ч.)[2,5,6] Результаты моделирования в среде Mathcad: 1) функции дифракции от оптического волокна, 2) процесса оптимальной установки границы ПЗС-фотоприемника относительно главного максимума в дифракционной картине с учетом эффекта блюминга ПЗС-фотоприемника, 3) измерения диаметра оптического волокна
- **5.** Теоретическая подготовка по лекционному материалу.(5ч.)[1] Теоретический материал по лекциям 5,6
- **6.** Оформление отчета по лабораторной работе **3.** Подготовка к защите.(10ч.)[2,5,6] Результаты моделирования в среде Mathcad изменений параметров в амплитудном спектре от дискретной гармонической функции в зависимости от изменения ее периода при заданном времени наблюдения.
- **7. Теоретическая подготовка по лекционному материалу.(5ч.)[1,2,5]** Теоретический материал по лекциям 7,8
- **8.** Оформление отчета по лабораторной работе. Подготовка к защите.(10ч.)[2,5,6] Результаты моделирования в среде Mathcad изменений параметров в амплитудном спектре от дискретной сложной периодической функции.
- **9. Подготовка к экзамену(36ч.)[1,2,3,6]** Экзамен

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

Для каждого обучающегося обеспечен индивидуальный неограниченный доступ к электронно-библиотечным системам: Лань, Университетская библиотека он-лайн, электронной библиотеке АлтГТУ и к электронной информационно-образовательной среде:

- 1. Пронин С.П. Слайды к курсу лекций «Оптоинформатика» [Электронный ресурс]: Курс лекций.— Электрон. дан.— Барнаул: АлтГТУ, 2020.— Режим доступа: http://elib.altstu.ru/eum/download/it/Pronin_OptoInf_lect.pdf, авторизованный
- 2. Пронин С.П. Методические указания по выполнению лабораторных работ по дисциплине «Оптоинформатика» [Электронный ресурс]: Методические указания.— Электрон. дан.— Барнаул: АлтГТУ, 2020.— Режим доступа: http://elib.altstu.ru/eum/download/it/Pronin OptoInf mu.pdf, авторизованный

6. Перечень учебной литературы

- 6.1. Основная литература
- 3. Енгибарян, И. А. Волоконно-оптические линии связи: учебное пособие / И. А. Енгибарян, В. В. Зуев. Москва: Ай Пи Ар Медиа, 2022. 160 с. ISBN 978-5-4497-1707-8. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/122221.html (дата обращения: 23.04.2023). Режим доступа: для авторизир. пользователей. DOI: https://doi.org/10.23682/122221
- 4. Ефанов, В. И. Электрические и волоконно-оптические линии связи : учебное пособие / В. И. Ефанов. Томск : Томский государственный университет систем управления и радиоэлектроники, 2012. 149 с. ISBN 5-86889-356-5. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/14032.html (дата обращения: 25.04.2023). Режим доступа: для авторизир. пользователей

6.2. Дополнительная литература

- 5. Фомин, В. Г. Математическое моделирование в системе MathCAD : учебное пособие / В. Г. Фомин. Саратов : Саратовский государственный технический университет имени Ю.А. Гагарина, ЭБС АСВ, 2020. 80 с. ISBN 978-5-7433-3387-5. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/108693.html (дата обращения: 23.04.2023). Режим доступа: для авторизир. пользователей. DOI: https://doi.org/10.23682/108693
- 6. Неделько, С. В. Типовые задачи по рядам и преобразованию Фурье. Специальные главы математического анализа : учебно-методическое пособие / С. В. Неделько, Г. Н. Миренкова. Новосибирск : Новосибирский государственный

технический университет, 2019. — 62 с. — ISBN 978-5-7782-3962-3. — Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. — URL: https://www.iprbookshop.ru/98749.html (дата обращения: 23.04.2023). — Режим доступа: для авторизир. Пользователей

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 7. Рецензируемый российский журнал "Компьютерные исследования и моделирование" . Режим доступа: http://crm.ics.org.ru/journal/page/crminfo/
- 8. Рецензируемый российский журнал "Компьютерная оптика" . Режим доступа: http://www.computeroptics.smr.ru/

8. Фонд оценочных материалов для проведения текущего контроля успеваемости и промежуточной аттестации

Содержание промежуточной аттестации раскрывается в комплекте контролирующих материалов, предназначенных для проверки соответствия уровня подготовки по дисциплине требованиям ФГОС, которые хранятся на кафедре-разработчике РПД в печатном виде и в ЭИОС.

Фонд оценочных материалов (ФОМ) по дисциплине представлен в приложении А.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Для успешного освоения дисциплины используются ресурсы электронной информационно-образовательной среды, образовательные интернет-порталы, глобальная компьютерная сеть Интернет. В процессе изучения дисциплины происходит интерактивное взаимодействие обучающегося с преподавателем через личный кабинет студента.

№пп	Используемое программное обеспечение	
1	LibreOffice	
2	Mathcad 15	
2	Windows	
3	Антивирус Kaspersky	

№пп	Используемые профессиональные базы данных и информационные	
	справочные системы	
1	Бесплатная электронная библиотека онлайн "Единое окно к образовательным ресурсам" для студентов и преподавателей; каталог ссылок на образовательные интернет-ресурсы (http://Window.edu.ru)	
2	Национальная электронная библиотека (НЭБ) — свободный доступ читателей к фондам российских библиотек. Содержит коллекции оцифрованных документов (как открытого доступа, так и ограниченных авторским правом), а также каталог	

№пп	Используемые профессиональные базы данных и информационные	
	справочные системы	
	изданий, хранящихся в библиотеках России. (http://нэб.рф/)	

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Наименование специальных помещений и помещений для самостоятельной работы
учебные аудитории для проведения учебных занятий
помещения для самостоятельной работы

Материально-техническое обеспечение и организация образовательного процесса по дисциплине для инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с «Положением об обучении инвалидов и лиц с ограниченными возможностями здоровья».