АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ «Техническая механика»

по основной профессиональной образовательной программе по направлению подготовки 13.03.02 «Электроэнергетика и электротехника» (уровень бакалавриата)

Направленность (профиль): Электроснабжение

Общий объем дисциплины – 4 з.е. (144 часов)

Форма промежуточной аттестации – Экзамен.

- В результате освоения дисциплины у обучающихся должны быть сформированы компетенции с соответствующими индикаторами их достижения:
- ОПК-5.3: Выполняет расчеты параметров и режимов объектов профессиональной деятельности;

Содержание дисциплины:

Дисциплина «Техническая механика» включает в себя следующие разделы:

Форма обучения очная. Семестр 3.

- 1. Введение. Основные гипотезы и допущения. Метод сечений. Введение. Основные понятия и задачи курса технической механики. Структура курса. Понятие о силе и системе сил. Аксиомы статики. Связи и реакции связей. Виды опорных устройств. Плоская система сходящихся сил. Проекция силы на ось. Определение равнодействующей системы сил аналитическим способом. Пара сил и момент силы относительно точки. Главный вектор и главный момент. Уравнения равновесия произвольной плоской системы сил. Виды нагрузок. Определение опорных реакций. Механические свойства материалов. Виды расчетов. Основные гипотезы и допущения. Классификация нагрузок. Классификация тел. Внутренние силовые факторы. Метод сечений. Понятие о напряжениях в поперечном сечении бруса. Виды деформаций тела..
- **2.** Геометрические характеристики плоских сечений. Геометрические характеристики плоских фигур. Статический момент площади сечения. Центр тяжести площади. Моменты инерции плоских фигур. Моменты инерции сложных сечений. Моменты инерции относительно параллельных осей. Главные оси и главные моменты инерции. Моменты сопротивления..
- 3. Растяжение и сжатие. Напряжения и деформации при растяжении и сжатии. Растяжение и сжатие. Напряжения и деформации при растяжении и сжатии. Построение эпюр продольных сил. Определение напряжения и деформации при растяжении и сжатии. Расчет перемещений поперечных сечений бруса при растяжении и сжатии. Дифференциальные зависимости. Механические испытания материалов на растяжение и сжатие. Механические характеристики материалов. Виды диаграмм растяжения. Концентрация напряжений. Предельные и допускаемые напряжения. Расчеты на прочность при растяжении и сжатии. Условия прочности...
- **4. Напряжения и деформации при сдвиге и кручении.** Сдвиг. Кручение. Напряжения и деформации. Расчеты на прочность и жесткость при сдвиге и кручении. Внутренние силовые факторы при сдвиге и кручении. Правило знаков. Построение эпюр. Правила контроля эпюр. Деформации при чистом сдвиге и кручении. Касательные напряжения и расчет на прочность при сдвиге и кручении..
- **5. Напряжения и деформации при изгибе..** Классификация видов изгиба. Внутренние силовые факторы при изгибе. Правило знаков. Дифференциальные зависимости при прямом поперечном изгибе. Построение эпюр поперечных сил и изгибающих моментов. Правила контроля эпюр. Деформации при чистом изгибе. Нормальные напряжения при изгибе. Рациональные формы поперечных сечений. Касательные напряжения при изгибе. Расчет на прочность при изгибе. Линейные и угловые перемещения при изгибе. Дифференциальное уравнение изогнутой оси балки и его интегрирование. Определение перемещений методом Мора. Способы вычисления интеграла Мора. Правило Верещагина..
- **6. Напряженное состояние в точке. Теории прочности..** Напряженное состояние в точке. Главные напряжения. Линейное, плоское и объемное напряженные состояния. Классические теории прочности..

Разработал:

профессор кафедры МиИ

Н.В. Перфильева

Проверил: И.о. декана ФСТ

С.Л. Кустов