АННОТАЦИЯ К РАБОЧЕЙ ПРОГРАММЕ ДИСЦИПЛИНЫ «Математика»

по основной профессиональной образовательной программе по направлению подготовки 19.03.04 «Технология продукции и организация общественного питания» (уровень бакалавриата)

Направленность (профиль): Технология продуктов общественного питания **Общий объем дисциплины** – 10 з.е. (360 часов)

- В результате освоения дисциплины у обучающихся должны быть сформированы компетенции с соответствующими индикаторами их достижения:
- ОПК-2.1: Использует естественнонаучные законы при решении задач;
- ОПК-2.2: Использует фундаментальные разделы естественных наук для анализа процессов, происходящих при переработке пищевого сырья и хранении продуктов питания;

Содержание дисциплины:

Дисциплина «Математика» включает в себя следующие разделы:

Форма обучения очная. Семестр 1.

Объем дисциплины в семестре – 5 з.е. (180 часов)

Форма промежуточной аттестации – Экзамен

- **1.** Линейная алгебра и ее основные законы. Понятие матрицы, типы матриц. Операции над матрицами. Определители, их свойства и способы их вычисления. Формулы Крамера. Обратная матрица. Решение систем матричным способом. Ранг матрицы и его вычисление. Теорема Кронекера-Капелли. Линейные однородные системы. Применение полученных навыков для решения систем метод Гаусса..
- **2.** Введение в математический анализ. Понятие предела функции в точке и на бесконечности. Непрерывность функции в точке. Предел числовой последовательности. Основные теоремы о пределах. Бесконечно малые и бесконечно большие функции. Первый и второй замечательные пределы. Сравнение бесконечно малых, эквивалентные бесконечно малые. Вычисление предел, используя правила устранения неопределенностей..
- **3.** Дифференциальное исчисление функции одной переменной. Понятие производной, ее геометрический и механический смысл. Уравнение касательной и нормали к кривой. Таблица производных основных элементарных функций. Правила дифференцирования функций. Дифференциал функции. Нахождение производных заданных функций, используя навыки дифференцирования..
- **4.** Дифференциальное исчисление функций нескольких переменных. Понятие функции нескольких переменных. Область определения, предел, непрерывность. Частные производные, полное приращение и полный дифференциал. Частные производные и дифференциалы высших порядков. Производная по направлению и градиент. Касательная плоскость и нормаль к поверхности. Нахождение производных заданных функций, используя навыки дифференцирования..
- **5.** Интегральное исчисление функции одного переменного. Первообразная и неопределенный интеграл, его свойства. Таблица основных интегралов. Замена переменной и интегрирование по частям. Интегрирование рациональных дробей. Интегрирование тригонометрических функций. Интегрирование некоторых иррациональных функций. Определенный интеграл как предел интегральных сумм, его свойства. Формула Ньютона-Лейбница. Замена переменной и интегрирование по частям в определенном интеграле. Геометрические и физические приложения определенного интеграла. Несобственные интегралы. Вычисление интегралов с использованием навыков интегрирования..

Форма обучения очная. Семестр 2.

Объем дисциплины в семестре – 5 з.е. (180 часов)

Форма промежуточной аттестации – Экзамен

6. Дифференциальные уравнения. Задачи приводящие к дифференциальным уравнениям. ДУ 1-го порядка. Задача Коши. Основные классы уравнений, интегрируемых в квадратурах: с разделяющимися переменными, однородные, линейные, в полных дифференциалах. ДУ высших порядков. Задача Коши. ДУ 2-го порядка, допускающие понижение порядка. Линейные ДУ:

однородные, неоднородные. Общее решение. Комплексные числа. Линейные ДУ с постоянными коэффициентами. Решить ДУ, применяя навыки интегрирования и технику решения ДУ..

7. Основы теории вероятности и математической статистики. Основные понятия комбинаторики.

Пространство элементарных событий. Классификация событий. Классическое, статистическое. Условная вероятность. Теоремы сложения и умножения вероятностей. Формула полной вероятности, формула Байеса. Схема Бернулли. Локальная и интегральная теоремы Муавра-Лапласа.

Дискретные и непрерывные случайные величины. Ряд распределения. Функция распределения и ее свойства, плотность распределения, их взаимосвязь. Математическое ожидание и дисперсия, их свойства, вычисление. Основные распределения случайных величин: биноминальное, Пуассона, равномерное, нормальное.

Модели случайных процессов. Эмпирическая функция распределения, полигон и гистограмма частот. Точечные и интервальные оценки параметров распределения. Проверка гипотез. Принцип максимального правдоподобия. Элементы корреляционной зависимости. Уравнение линейной регрессии. Статистические методы обработки экспериментальных данных. Вычисление вероятности

с применением изученных формул. Применяя навыки статистического расчета, выполнить расчет предложенным данным..

Разработал:

старший преподаватель

кафедры ВМ

И.П. Мурзина

Проверил:

Декан ФИТ А.С. Авдеев