ПРИЛОЖЕНИЕ А ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ «Физика»

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код контролируемой компетенции	Способ оценивания	Оценочное средство
ОК-7: способностью к самоорганизации и самообразованию	Зачет; экзамен	Комплект контролирующих материалов для зачета; комплект контролирующих материалов для экзамена
ОПК-1: способностью к приобретению с большой степенью самостоятельности новых знаний с использованием современных образовательных и информационных технологий	Зачет; экзамен	Комплект контролирующих материалов для зачета; комплект контролирующих материалов для экзамена

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Показатели оценивания компетенций представлены в разделе «Требования к результатам освоения дисциплины» рабочей программы дисциплины «Физика» с декомпозицией: знать, уметь, владеть.

При оценивании сформированности компетенций по дисциплине «Физика» используется 100-балльная шкала.

Критерий	Оценка по 100-	Оценка по
	балльной шкале	традиционной шкале
Студент твёрдо знает программный	75-100	Отлично
материал, системно и грамотно		
излагает его, демонстрирует		
необходимый уровень компетенций,		
чёткие, сжатые ответы на		
дополнительные вопросы, свободно		
владеет понятийным аппаратом.		
Студент проявил полное знание	50-74	Хорошо
программного материала,		
демонстрирует сформированные на		
достаточном уровне умения и навыки,		
указанные в программе компетенции,		
допускает непринципиальные		
неточности при изложении ответа на		
вопросы.		
Студент обнаруживает знания только	25-49	<i>Удовлетворительно</i>

основного материала, но не усвоил детали, допускает ошибки, демонстрирует не до конца сформированные компетенции, умения систематизировать материал и делать выводы.		
Студент не усвоил основное содержание материала, не умеет систематизировать информацию, делать необходимые выводы, чётко и грамотно отвечать на заданные вопросы, демонстрирует низкий уровень овладения необходимыми компетенциями.	<25	Неудовлетворительно

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности.

№ пп	Вопрос/Задача	Проверяемые компетенции
	Фундаментальные законы, понятия и модели по теме "Механика, молекулярная физика и термодинамика". (ЧАСТЬ №1)	ОК-7, ОПК-1
	1. Кинематика поступательного и вращательного движения: Скорость. Ускорение. Нормальное и тангенциальное ускорение. Угловое перемещение, угловая скорость, угловое ускорение. Связь линейных величин с угловыми.	
	2. Динамика поступательного движения, уравнения движения: Законы Ньютона. Силы в механике. Принцип относительности Галилея. Силы инерции. 3. Законы сохранения: Работа силы. Мощность.	
	Кинетическая и потенциальная энергия. Связь между консервативной силой и потенциальной энергией. Закон сохранения энергии в консервативной системе. Закон сохранения	
	энергии в диссипативной системе. Закон сохранения импульса. Упругое и неупругое соударение тел.	
	4. Динамика вращательного движения твердого тела: Момент силы и момент импульса. Момент инерции. Теорема Штейнера. Закон сохранения момента импульса. Кинетическая энергия	
	вращения. Уравнение динамики вращательного движения. 5. Основы МКТ, уравнение состояния идеального	
	газа: Законы идеального газа. Уравнение состояния идеального газа. Основное уравнение МКТ идеальных газов. Средняя арифметическая	
	скорость молекул газа. Средняя квадратичная скорость молекул газа. Наиболее вероятная скорость молекул газа. Закон Максвелла о	

№ пп	Вопрос/Задача	Проверяемые
	распределении молекул идеального газа по	компетенции
	скоростям. Барометрическая формула.	
	Распределение Больцмана.	
	6. Основы термодинамики: Внутренняя энергия	
	термодинамической системы. Внутренняя энергия идеального газа. Число степеней свободы	
	идеального газа. Число степеней свободы системы. Закон Больцмана о распределении	
	энергии. Работа газа в различных изопроцессах.	
	Три начала термодинамики. Применение І начала	
	термодинамики к различным изопроцессам.	
	Удельная и молярная теплоемкость газа. КПД	
	кругового цикла. Обратимые и необратимые	
	процессы. Тепловые двигатели и холодильные	
	машины, их КПД. Цикл Карно. КПД цикла Карно.	
	Энтропия и ее термодинамическое и статистическое толкование.	
2	Фундаментальные законы, понятия и модели по	OK-7, OΠK-1
	теме "Электричество и магнетизм". (ЧАСТЬ №2)	
	1. □Электрическое поле в вакууме: Электрический	
	заряд. Закон Кулона. Напряженность и потенциал	
	электростатического поля. Принцип суперпозиции. Связь напряженности и потенциала. Теорема	
	Связь напряженности и потенциала. Теорема Гаусса для электростатического поля в вакууме.	
	Работа сил электростатического поля в вакууме.	
	2. □Вещества в электрическом поле: Поляризация	
	диэлектриков. Вектор электрической индукции.	
	Теорема Гаусса для вектора электростатической	
	индукции. Условия на границе двух диэлектриков.	
	Проводники в электрическом поле. Конденсаторы.	
	Энергия электрического поля.	
	3. □Постоянный электрический ток: Сила и	
	плотность тока. Законы постоянного тока.	
	Электродвижущая сила. Законы Ома для неоднородного участка цепи и замкнутого	
	контура. Работа и мощность электрического тока.	
	Закон Джоуля-Ленца. Правила Кирхгофа.	
	4. □Ток в средах: Электрический ток в	
	полупроводниках. Собственная и примесная	
	проводимость полупроводников. Электрический ток	
	в газах. Электрический ток в жидкостях.	
	5.□Магнитное поле в вакууме: Магнитное поле.	
	Вектор магнитной индукции и напряженности	
	магнитного поля. Принцип суперпозиции магнитных	
	полей. Закон Био-Савара-Лапласа. Сила Лоренца и	
	сила Ампера. Теорема Гаусса для магнитного поля в вакууме. Циркуляция вектора магнитной	
	индукции. Движение заряженных частиц в	
	электрических и магнитных полях. Эффект Холла.	
	6. □Магнитные свойства вещества: Молекулярные	
L	1	

№ пп	Вопрос/Задача	Проверяемые
	токи. Вектор намагниченности. Закон полного	компетенции
	тока для магнитного поля в веществе. Магнитная	
	проницаемость. Диа-, пара- и ферромагнетики.	
	Природа ферромагнетизма.	
	7. □Электромагнитная индукция: Явление	
	электромагнитной индукции. Закон Фарадея.	
	Правило Ленца. Самоиндукция. Энергия и	
	плотность энергии магнитного поля. Взаимная	
	индукция. Трансформатор.	
	8. □Основы теории Максвелла для	
	электромагнитного поля: Вихревое электрическое	
	поле. Система уравнений Максвелла в	
_	интегральной и дифференциальной форме.	
3	Фундаментальные законы, понятия и модели по	ОК-7, ОПК-1
	теме "Колебания и волны. Оптика. Атомная и	
	ядерная физика". (ЧАСТЬ №3)	
	1. Колебания и волны: Свободные, затухающие и вынужденные колебания. Сложение колебаний.	
	, ··	
	Закон Ома для цепи переменного тока. Мощность переменного тока. Волновое движение. Плоские и	
	сферические волны. Волновое уравнение.	
	Электромагнитные волны. Энергия и импульс	
	электромагнитного поля. Вектор Пойнтинга.	
	2. Геометрическая и волновая оптика: Законы	
	геометрической оптики. Интерференция	
	монохроматических волн. Условия	
	интерференционных максимумов и минимумов.	
	Полосы равного наклона и равной толщины. Кольца	
	Ньютона. Принцип Гюйгенса-Френеля. Метод зон	
	Френеля. Дифракция Френеля и Фраунгофера.	
	Дифракционная решетка. Поляризация света. Закон	
	Малюса. Закон Брюстера. Двойное	
	лучепреломление. Вращение плоскости	
	поляризации. Дисперсия света. Нормальная и аномальная дисперсии.	
	з. Квантовая оптика: Тепловое излучение.	
	Абсолютно черное тело. Функция Кирхгофа. Законы	
	Стефана-Больцмана, Вина. Гипотеза Планка.	
	Квантовая природа излучения. Формула Планка.	
	Фотоэффект. Законы внешнего фотоэффекта.	
	Уравнение Эйнштейна для фотоэффекта. Фотоны.	
	Давление света. Эффект Комптона.	
	4. Элементы атомной физики и квантовой	
	механики: Ядерная модель атома Резерфорда.	
	Постулаты Бора. Гипотеза де Бройля. Опыт	
	Девиссона и Джермера. Принцип неопределенности.	
	Уравнение Шредингера. Корпускулярно-волновой	
	дуализм: фотоны и микрочастицы. Волновая	
	функция, и ее статистическое толкование. Правила отбора для квантовых переходов.	
	правина отоора для кваптовых переходов.	

№ пп	Вопрос/Задача	Проверяемые компетенции
	5. Элементы ядерной физики: Состав ядра атома. Ядерные силы и модели атомного ядра. Виды радиоактивного излучения. Ядерные реакции. Элементарные частицы. Типы взаимодействия.	

4. Файл и/или БТЗ с полным комплектом оценочных материалов прилагается.