ПРИЛОЖЕНИЕ А ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ «Химия полимеров»

1. Перечень оценочных средств для компетенций, формируемых в результате освоения дисциплины

Код контролируемой компетенции	Способ оценивания	Оценочное средство
ПК-2: Способен выбирать металлические, неметаллические и композиционные материалы для деталей машин, приборов и инструментов на основе знаний о взаимосвязи структуры и свойств материалов	Экзамен	Комплект контролирующих материалов для экзамена

2. Описание показателей и критериев оценивания компетенций, описание шкал оценивания

Оцениваемые компетенции представлены в разделе «Перечень планируемых результатов обучения по дисциплине, соотнесенных с индикаторами достижения компетенций» рабочей программы дисциплины «Химия полимеров».

При оценивании сформированности компетенций по дисциплине «Химия полимеров» используется 100-балльная шкала.

Критерий	Оценка по 100-	Оценка по
	балльной шкале	традиционной шкале
Студент освоил изучаемый материал	75-100	Отлично
(основной и дополнительный),		
системно и грамотно излагает его,		
осуществляет полное и правильное		
выполнение заданий в соответствии с		
индикаторами достижения		
компетенций, способен ответить на		
дополнительные вопросы.		
Студент освоил изучаемый материал,	50-74	Хорошо
осуществляет выполнение заданий в		
соответствии с индикаторами		
достижения компетенций с		
непринципиальными ошибками.		
Студент демонстрирует освоение	25-49	<i>Удовлетворительно</i>
только основного материала, при		
выполнении заданий в соответствии с		
индикаторами достижения компетенций		
допускает отдельные ошибки, не		
способен систематизировать материал		
и делать выводы.		
Студент не освоил основное	<25	Неудовлетворительно
содержание изучаемого материала,		
задания в соответствии с		
индикаторами достижения компетенций		

не выполнены или выполнены невери	10.

3. Типовые контрольные задания или иные материалы, необходимые для оценки уровня достижения компетенций в соответствии с индикаторами

1.Используя данные варианта 1 таблицы приложения 1, решить задачу, рассчитать значения средних молекулярных масс полимера (среднечисленная, средневзвешенная, Z-средняя). Сравнить полученные значения и установить влияние (взаимосвязь) молекулярномассовых характеристик на состав, структуру полимера, на его физико-механические свойства.

	Ko	мпетенция		Ин	дикатор достиж	ения ком	петенции	
ПК-2	Способен	выбирать	ΠK-2.1	Устанавливает	СВЯЗЬ	состава	И	
немета	ллические и	композицион	ные материалы	структур	ы материало	3 C	их физи	KO-
для де	талей машин,	приборов и и	нструментов на	механиче	•	хнологич	І ескими	И
основе		взаимосвязи	структуры и	эксплуат	гационными свой	ствами		
свойст	в материалов							

В результате дробного осаждения полиметилметакрилата из ацетоновых растворов водой был установлен следующий фракционный состав:

Вариант 1

a _i , %	5,0	14,5	40,6	17,5	18,0	4,5
$M_i 10^4$	22,0	16,0	7,5	5,2	3,0	1,8

Вариант 2

a _i , %	6,0	13,5	12,5	35,5	7,5	25,0
$M_i 10^4$	6,5	4,05	3,5	1,54	0,89	0,5

Вариант 3

a_i	, %	5,0	12,5	14,5	35,5	7,5	25,0
N	$I_{\rm i} 10^4$	9,57	60,2	4,25	2,4	1,62	0.8

Вариант 4

a _i , %	7,0	11,0	13,5	24,5	25,0	19,0
$M_i 10^4$	0,15	1,0	1,46	2,74	3,5	4,05

Вариант 5

a _i , %	5,0	11,5	37,5	13,5	23	9,5
$M_i 10^4$	0,7	2,42	3,7	4,52	7,5	8,9

Вариант 6

a _i , %	6,0	14,5	12,5	34,5	7,5	25,0
$M_{i} 10^{4}$	2,2	3,34	5,27	8,9	11,5	15,0

Вариант 7

a _i , %	5,0	14,5	40,6	17,5	18,0	4,5
$M_i 10^4$	21,0	15,0	6,9	5,2	3,2	1,7

Вариант 8

a _i , %	6,0	13,5	12,5	35,5	7,5	25,0
$M_{i} 10^{4}$	6,4	4,1	3,75	1,8	0,9	0,54

Вариант 9

a _i , %	5,0	12,5	14,5	35,5	7,5	25,0
$M_i 10^4$	9,6	61,2	4,3	2,25	1,7	0,9

Вариант 10

a _i , %	7,0	11,0	13,5	24,5	25,0	19,0
$M_i 10^4$	0,2	1,5	1,5	2,7	3,45	4,1

Вариант 11

a _i , %	5,0	11,5	37,5	13,5	23	9,5
$M_i 10^4$	0,75	2,45	3,8	4,5	7,5	8,7

Вариант 12

a _i , %	6,0	14,5	12,5	34,5	7,5	25,0
$M_{i} 10^{4}$	2,1	3,5	5,25	9,2	11,6	14,8

Вариант 13

a _i , %	7,0	11,0	13,5	24,5	25,0	19,0
$M_i 10^4$	0,18	1,4	1,65	2,8	3,7	4,1

2.Используя данные варианта 1 таблицы приложения 1, построить интегральную и дифференциальную кривые молекулярно-массового распределения (ММР). Установить связь данных с полученных кривых (описывающих состав и структуру полимера) с физикомеханическими, технологическими и эксплуатационными свойства материала.

	Ко	мпетенция			Индикатор достижения компетенции						
ПК-2	Способен	выбирать	металлически	e,	ПК-2.1	Устанавли	вает	СВЯЗЬ	сост	ава	И
неметалл	пические и	_	ные материал		структур	ы матері	иалов	C	ИХ	физик	0-
1		приборов и и	інструментов і							И	
	знаний о	взаимосвязи	структуры	И	эксплуат	гационными	свойст	вами			
свойств	материалов										

В результате дробного осаждения полиметилметакрилата из ацетоновых растворов водой был установлен следующий фракционный состав:

Вариант 1

a _i , %	5,0	14,5	40,6	17,5	18,0	4,5
$M_i 10^4$	22,0	16,0	7,5	5,2	3,0	1,8

Вариант 2

a _i , %	6,0	13,5	12,5	35,5	7,5	25,0
$M_i 10^4$	6,5	4,05	3,5	1,54	0,89	0,5

Вариант 3

a _i , %	5,0	12,5	14,5	35,5	7,5	25,0
$M_i 10^4$	9,57	60,2	4,25	2,4	1,62	0,8

Вариант 4

a _i , %	7,0	11,0	13,5	24,5	25,0	19,0
$M_i 10^4$	0,15	1,0	1,46	2,74	3,5	4,05

Вариант 5

a _i , %	5,0	11,5	37,5	13,5	23	9,5
$M_i 10^4$	0,7	2,42	3,7	4,52	7,5	8,9

Вариант 6

a _i , %	6,0	14,5	12,5	34,5	7,5	25,0
$M_{i} 10^{4}$	2,2	3,34	5,27	8,9	11,5	15,0

Вариант 7

a _i , %	5,0	14,5	40,6	17,5	18,0	4,5
$M_i 10^4$	21,0	15,0	6,9	5,2	3,2	1,7

Вариант 8

a _i , %	6,0	13,5	12,5	35,5	7,5	25,0
$M_{\rm i} 10^4$	6,4	4,1	3,75	1,8	0,9	0,54

Вариант 9

a _i , %	5,0	12,5	14,5	35,5	7,5	25,0
$M_i 10^4$	9,6	61,2	4,3	2,25	1,7	0,9

Вариант 10

a _i , %	7,0	11,0	13,5	24,5	25,0	19,0
$M_i 10^4$	0,2	1,5	1,5	2,7	3,45	4,1

Вариант 11

a _i , %	5,0	11,5	37,5	13,5	23	9,5
$M_i 10^4$	0,75	2,45	3,8	4,5	7,5	8,7

Вариант 12

a _i , %	6,0	14,5	12,5	34,5	7,5	25,0
$M_i 10^4$	2,1	3,5	5,25	9,2	11,6	14,8

Вариант 13

a _i , %	7,0	11,0	13,5	24,5	25,0	19,0
$M_i 10^4$	0,18	1,4	1,65	2,8	3,7	4,1

3.Выбрать из данных приложения 2 типы полимеризации, дать определение этому процессу синтеза высокомолекулярных соединений (ВМС), указать основные стадии. Установить, как выбор типа реакции синтеза ВМС определяет состав и структуру материала, влияет на физико-механические, технологические и эксплуатационные свойства.

	Компетенция		Индикатор достижения компетенции	
ПК-2 Спос	обен выбирать	металлические,	ПК-2.1 Устанавливает связь состава	И
неметалличес	· · · · · · · · · · · · · · · · · · ·	онные материалы	1 1 3 31 1	0-
для деталей		инструментов на	•	И
	ий о взаимосвя	зи структуры и	эксплуатационными свойствами	
свойств мате	риалов			

Радикальные	Формальдегидные
Амидные	Ионные
Слож	ноэфирные
Ступенчатые	
Эпоксидные	Сополимеризации
	Ионно-координационные

4.Выбрать из данных приложения 2 типы полимеров, полученных поликонденсацией, дать определение этому процессу синтеза высокомолекулярных соединений (ВМС), указать основные стадии. Установить, как поликонденсация определяет состав и структуру материала, влияет на физико-механические, технологические и эксплуатационные свойства.

	Компетенция				дикатор достиж	ения ком	петенции	
ПК-2	Способен	выбирать	металлические,	ΠK-2.1	Устанавливает	СВЯЗЬ	состава	И
неметал	ілические и	композицион	ные материаль	структу	ры материало	3 C	их физи	KO-
для дет	галей машин,	приборов и и	нструментов на			хнологич	ескими	И
основе	знаний о	взаимосвязи	структуры и	эксплуа	тационными свой	ствами		
свойств	материалов							

Радикальные	Формальдегидные
Амидные	Ионные
Сложн	оэфирные
Ступенчатые	
Эпоксидные	Сополимеризации
	Ионно-координационные

5.Из данных приложения 3 составить схему взаимосвязи физических состояний и переходов полимеров. Установить, как структура полимеров в различных физических и фазовых состояниях определяет их физико-механические, технологические и эксплуатационные свойства.

Компетенция	Индикатор достижения компетенции
ПК-2 Способен выбирать металлические,	ПК-2.1 Устанавливает связь состава и
неметаллические и композиционные материалы	структуры материалов с их физико-
для деталей машин, приборов и инструментов на	механическими, технологическими и
основе знаний о взаимосвязи структуры и	эксплуатационными свойствами
свойств материалов	

Газообразное	Агрегатные
Жидкое	Физические состояние полимеров
Φε	азовые
Твердое	
Аморфное (жидкое)	Жидко-кристаллическое
	Кристаллическое

6.Используя данные приложения 4 составить таблицу по определению (соответствию) способов полимеризации. Установить связь применения способов полимеризации с формируемой структурой и свойствами полимера, влиянием этих факторов на конечные физико-механические свойства, технологические и эксплуатационные свойства.

Компетенция		Индикатор достижения компетенции			
ПК-2 Способен	выбирать металлические,	ПК-2.1 Устанавливает связь состава и			
неметаллические и	композиционные материалы	структуры материалов с их физико-			
для деталей машин,	приборов и инструментов на	механическими, технологическими и			
основе знаний о	взаимосвязи структуры и	эксплуатационными свойствами			
свойств материалов					

	таолица т	
Способ	Описание, характеристика способа полимеризации	
полимеризации		
	Ее природа пока не установлена (ионный или радикальный характер).	
	Особенность этой полимеризации в том, что она протекает при	
	температурах ниже температуры плавления полимеров. Поэтому	
	наиболее употребительными методами инициирования в твердой фазе	
	являются радиационно-химические и фотохимические.	
	Протекает с большими скоростями и позволяет получать полимеры с	
	высокомолекулярной массой в виде порошка или водных эмульсий.	
	Мономер находится в диспергированном состоянии в водной среде,	
	содержащей эмульгатор. Продукт полимеризации – водная дисперсия	
	полимера – латекс.	
	Используется для получения ограниченного числа полимеров.	
	Мономер – газ. Важным преимуществом способа является отсутствие	
	растворителя и необходимости выделения готового полимера из	
	раствора.	
	Подвергаются жидкие мономеры в присутствии растворенных в них	
	инициаторов (могут быть органические примеси). Такую	
	полимеризацию можно осуществлять по периодическому и	
	непрерывному способу. В первом случае полимер образуется в	
	формах, помещаемых в обогреваемые камеры. В зависимости от	
	используемой формы готовое изделие может иметь вид пластины,	
	трубы и т. д.	
	Осуществляется в среде, растворяющей либо мономер и полимер,	
	либо только мономер. В первом случае продукт реакции – раствор	
	полимера в растворителе. Этот продукт используют в виде лака или	
	отделяют полимер от растворителя фильтрованием. Так проводят	
	главным образом ионную полимеризацию.	
	Проводят в жидкости, не растворяющей мономер, обычно в воде.	
	Размер капель мономера в водной фазе в сотни раз больше (от 1 мкм	
	до 1 мм), чем при эмульсионной полимеризации. Также добавляются	
	эмульгаторы, образующие с каплями мономера дисперсию.	

Заполнить столбец "Способ полимеризации", определив по описанию соответствующий способ полимеризации из перечня:

- А Полимеризация в газовой фазе
- Б Полимеризация в твердой фазе.
- В Полимеризации в блоке
- Γ Полимеризация в растворителях
- Д Полимеризация в эмульсиях
- Е Суспензионная полимеризация

7.Используя данные приложения 5 составить схему классификации видов деструкции полимеров. Дать определение видам деструкции и установить их влияние на изменение структуры и свойств полимера, на конечные физико-механические свойства, технологические и эксплуатационные свойства.

	ŀ	Компетенция		Ин	ідикатор достижеі	ния комп	етенции	
ПК-2	Способен	выбирать	металлические,	ПК-2.1	Устанавливает	СВЯЗЬ	состава	И
немета	ллические и	композиционн	ые материалы	структу	ры материалов с	их физик	0-	

для деталей машин, приборов и инструментов на основе знаний о взаимосвязи структуры и эксплуатационными свойствами свойств материалов

Виды деструкции	Радиационная
Гидролитическая	Физическая
X	имическая
Термоокисление	
Термическая	Фотоокисление
Фотохимическая	
	Механическая

4. Файл и/или БТЗ с полным комплектом оценочных материалов прилагается.