ПРИЛОЖЕНИЕ А ФОНД ОЦЕНОЧНЫХ МАТЕРИАЛОВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ «Математика»

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

Код контролируемой компетенции	Способ оценивания	Оценочное средство
ОК-7: способностью к самоорганизации и самообразованию	Зачет; экзамен	Комплект контролирующих материалов для зачета; комплект контролирующих материалов для экзамена
ОПК-3: способностью применять систему фундаментальных знаний (математических, естественнонаучных, инженерных и экономических) для идентификации, формулирования и решения технических и технологических проблем в области технологии, организации, планирования и управления технической и коммерческой эксплуатацией транспортных систем	Зачет; экзамен	Комплект контролирующих материалов для зачета; комплект контролирующих материалов для экзамена

2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Показатели оценивания компетенций представлены в разделе «Требования к результатам освоения дисциплины» рабочей программы дисциплины «Математика» с декомпозицией: знать, уметь, владеть.

При оценивании сформированности компетенций по дисциплине «Математика» используется 100-балльная шкала.

Критерий	Оценка по 100-	Оценка по
	балльной шкале	традиционной шкале
Студент твёрдо знает программный	75-100	Отлично
материал, системно и грамотно		
излагает его, демонстрирует		
необходимый уровень компетенций,		
чёткие, сжатые ответы на		
дополнительные вопросы, свободно		
владеет понятийным аппаратом.		
Студент проявил полное знание	50-74	Хорошо
программного материала,		
демонстрирует сформированные на		
достаточном уровне умения и навыки,		
указанные в программе компетенции,		
допускает непринципиальные		

неточности при изложении ответа на вопросы.		
Студент обнаруживает знания только основного материала, но не усвоил детали, допускает ошибки, демонстрирует не до конца сформированные компетенции, умения систематизировать материал и делать выводы.	25-49	Удовлетворительно
Студент не усвоил основное содержание материала, не умеет систематизировать информацию, делать необходимые выводы, чётко и грамотно отвечать на заданные вопросы, демонстрирует низкий уровень овладения необходимыми компетенциями.	<25	Неудовлетворительно

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности.

№ пп	Вопрос/Задача	Проверяемые компетенции
1	Линейная алгебра	0К-7, 0ПК-3
	1. □Определение матрицы. Виды матриц.	
	2. □Линейные операции над матрицами.	
	3. □Умножение матриц. Операция транспонирования.	
	4. □Понятие определителя Приложение и его	
	свойства.	
	5.□Свойства матрицы.	
	6.□Определение обратной матрицы Виды матриц.	
	7.□Линейные операции над матрицами.	
	8.□Теорема существования А-1.	
	9. □Решения матричных уравнений.	
	10. □Понятие ранга матрицы. Определение матрицы трапециевидной формы. Теорема о ранге матрицы трапециевидной формы.	
	11. □Элементарные преобразования. Определение эквивалентных матриц. Теорема об эле-ментарных преобразованиях и ранге матрицы.	
	12. □Теорема о приведении матрицы к трапециевидной форме.	
	13.□Система линейных алгебраических уравнений	
	(СЛАУ). Основные понятия СЛАУ: решения,	
	совместности (определённости,	
	неопределённости), несовместности.	
	14. □ Определение крамеровской системе. Теорема Крамера.	
	трамера. 15. □Теорема Кронекера-Капелли.	
	16. □Теорема кронекера-капелли. 16. □Теорема о числе решений СЛАУ. Определение	
	то. — георема о числе решении слуг. определение	

-3
2
- <
-5

-3
-3

№ пп	Вопрос/Задача	Проверяемые
	чётной, нечётной и периодической функции.	компетенции
	Теорема о графи-ке чётной (нечётной) функции.	
	3. □Арифметические операции на множестве	
	функций. Определение суперпозиции двух функций.	
	Определение обратной функции. Теорема о графиках f и f-1.	
	4. □Теорема (арифметические свойства предела	
	функции). Теорема (необходимое условие	
	существования конечного предела функции).	
	Теорема о переходе к пределу в неравен-ствах. Теорема (лемма о сжатой переменной).	
	5. □Определение непрерывной функции в точке.	
	6. □Классификация точек разрыва. Теорема (
	арифметические операции над непрерывны-ми	
	функциями). Теорема о непрерывности сложной	
	функции. 7. □Теорема о непрерывности элементарных	
	функций.	
	8. □Определение бесконечно малой (б.м.) и	
	бесконечно большой (б.б.) функции. Свойства	
	б.м. функций. Определение б.м. функций одного порядка, эквивалентных, более высокого порядка.	
	9. □Теорема (1 замечательный предел). Следствия.	
	10. □Теорема (2 замечательный пределу.	
	Следствия.	
	11. □Определение непрерывной функции на отрезке.	
	Теорема о равенстве нулю непрерыв-ной на	
	отрезке функции, которая меняет знак на этом	
	отрезке. Следствие о достижении промежуточных значений на отрезке.	
	12. □Теорема о непрерывности обратной функции.	
5	Дифференциальное исчисление функции одной переменной	ОК-7, ОПК-3
	1. □Задачи, приводящие к понятию производной.	
	2. □Определение производной. Теорема	
	(геометрический смысл производной). Примеры.	
	3. □Определения односторонних производных.	
	Теорема о непрерывности дифференци-руемых	
	функций. Показать на примере, что обратное	
	утверждение теоремы неверно.	
	4. □Правила дифференцирования. Следствие. 5. □Теорема о производной обратной функции.	
	5. □Теорема о производной обратной функции. Примеры. Таблица производных.	
	6. □Теорема о производной сложной функции.	
	Пример.	
	7. □Логарифмическое дифференцирование.	
	Производные функций, заданных параметри-чески,	

№ пп	Вопрос/Задача	Проверяемые компетенции
	неявно. 8. □Определение дифференциала. Пример. Геометрический смысл дифференциала и его свойства. Использование дифференциала в приближённых вычислениях. Дифферен-циалы высших порядков. 9. □Определения локального максимума и минимума.	-
	Теоремы Ферма, Ролля и их геомет-рическая интерпретация. 10. □Теоремы Коши, Лагранжа и их геометрическая интерпретация. 11. □Теорема (правило Лопиталя).	
	12. □Определения вертикальной, наклонной асимптот. Теорема (н. и д. условия существования наклонной асимптоты). 13. □Теорема о возрастающей (убывающей) функции	
	и знаке её производной. Теорема о достаточном условии существования экстремума. 14. □Определение выпуклой функции. Теорема (н. и	
	д. условие выпуклости). Определение точки перегиба. Теорема (необходимое условие перегиба). Теорема (достаточное ус-ловие перегиба).	
6	Приложения производной 1. □Сформулировать и доказать теорему Ролля. В чем состоит ее геометрический смысл? 1. □Сформулировать теорему Коши. 2. □Сформулировать и доказать теорему Лагранжа.	ОК-7, ОПК-3
	В чем состоит ее геометрический смысл? 3. □Сформулировать теорему Лопиталя. 4. □В чем заключается достаточный признак монотонности дифференцируемой функции? Привести доказательство.	
	5. □ Сформулировать и доказать необходимый признак существования экстремума.6. □ Доказать первый достаточный признак	
	экстремума. 7. □Доказать необходимый и достаточный признак выпуклости и вогнутости графика функции. 8. □Сформулировать достаточный признак	
	существования точки перегиба. 9. □Что называется асимптотой графика функции? 10. □Необходимый и достаточный признак существования вертикальной асимптоты.	
	11. □Необходимый и достаточный признак существования наклонной асимптоты. 12. □Описать общую схему полного исследования	

№ пп	Вопрос/Задача	Проверяемые компетенции
	функции.	
7	Функции нескольких переменных.	ОК-7, ОПК-3
	1. □Понятие функции нескольких переменных. Линии	
	и поверхности уровня.	
	2. □Что называется пределом функции z=f(x,y) при x□x0, y□y0?	
	1. □Дать определение непрерывности функции z=f(M) в точке MO. Дать определение част-ных производных функции.	
	2. □Какая функция нескольких переменных называется дифференцируемой?	
	3. Сформулировать необходимый и достаточный признаки дифференцируемости функ-ции нескольких переменных.	
	4. □Что называется полным приращением и дифференциалом функции z=f(x,y)? Какова их связь?	
	 5. □Частные производные и дифференциалы высших порядков. 	
	6. □Вывести правило дифференцирования неявно заданной функции.	
	7. □Что называется производной функции по направлению?	
	8. □Дать определение градиента функции. Как выражается производная по направлению через градиент?	
	9. □Сформулировать и обосновать свойства градиента.	
	10. □Что называется касательной плоскостью к поверхности в данной ее точке? Записать уравнение касательной плоскости и нормали.	
	11. □Дать определение точки экстремума (максимума и минимума) функции двух переменных. В чем состоит необходимый признак экстремума?	
	12. □Сформулировать и обосновать достаточное условие экстремума функции двух пере-менных.	
	13. □Описать способ отыскания наибольшего и наименьшего значений функции двух пере-менных в замкнутой области.	
8	Неопределенный интеграл.	ОК-7, ОПК-3
	1. □Что называется первообразной для данной функции? Привести примеры.	
	2. □Доказать теорему о множестве всех первообразных для функции.	
	3. ЦЧто называется неопределенным интегралом?	
	4. 🗆 В чем состоит метод интегрирования	

№ пп	Вопрос/Задача	Проверяемые компетенции
	подстановкой или замены переменной?	•
	5. □Сформулировать и обосновать метод	
	интегрирования по частям.	
	6. □В чем состоит метод интегрирования	
	рациональных дробей?	
	7. □Указать общий метод интегрирования функции,	
	рациональной относительно тригоно-метрических функций.	
	8. □Описать методы вычисления интегралов вида ,	
	где m и n □ целые числа.	
	9. □Интегрирование иррациональных выражений,	
	содержащих квадратный трехчлен.	
9	Определенный интеграл.	ОК-7, ОПК-3
	1. □Что называется определенным интегралом от	
	данной функции на данном отрезке?	
	2. □В чем состоит свойство аддитивности	
	определенного интеграла?	
	3. □ Каков геометрический смысл определенного интеграла от данной функции y=f(x) на отрезке	
	[a,b] ?	
	4. □Сформулировать, доказать и геометрически	
	иллюстрировать теорему о среднем в ин-	
	тегральном исчислении.	
	5. □Сформулировать и вывести формулу Ньютона □ Лейбница.	
	6. □В чем состоит метод замены переменной (подстановки) в определенном интеграле?	
	7. □Что называется несобственным интегралом от	
	данной функции по бесконечному ин-тервалу?	
	8. □Что называется несобственным интегралом от неограниченной функции?	
	9. Пеометрические приложения определенного	
	интеграла.	
	10. □Приложения определенного интеграла к	
	решению некоторых задач механики.	
10	Дифференциальные уравнения	ОК-7, ОПК-3
	1. □Что называется дифференциальным уравнением	
	1-го порядка и его решением? Задача Коши. Дать	
	определение общего решения, частного решения, особого решения.	
	2. Сформулировать теорему существования	
	единственного решения задачи Коши для	
	дифференциального уравнения 1-го порядка.	
	3. □Дать определение дифференциального уравнения	
	с разделяющимися переменными и указать метод	
	его решения.	
	4.□Какие дифференциальные уравнения 1-го	

№ пп	Вопрос/Задача	Проверяемые
		компетенции
	порядка называются линейными? Методы их решения.	
	5. □Что называется дифференциальным уравнением	
	п-го порядка и его решением? Задача Коши. Дать	
	определение общего решения, частного решения.	
	6. □Сформулировать теорему существования	
	единственного решения задачи Коши для	
	дифференциального уравнения п-го порядка.	
	7. □Изложить способ решения дифференциального	
	уравнения $y(n) = f(x)$.	
	8. □Изложить способ решения дифференциального	
	уравнения у // = f(x, y /).	
	9. □Изложить способ решения дифференциального	
	уравнения у // = f(y, y /).	
	10. □ЛОДУ п-го порядка. Свойства решений.	
	Понятие фундаментальной системы решений.	
	11. □Сформулировать теорему о структуре общего решения ЛОДУ 2-го порядка.	
	12. □Как понизить порядок ЛОДУ, если известно	
	его ненулевое частное решение?	
	13. □Структура общего решения ЛНДУ 2-го порядка.	
	то поружни	
	14. □Общее решение ЛОДУ п-го порядка с	
	постоянными коэффициентами в случае раз-личных	
	действительных характеристических чисел.	
	Обосновать для случая n = 2.	
	15. □Общее решение ЛОДУ п-го порядка с	
	постоянными коэффициентами в случае раз-личных	
	комплексных характеристических чисел. Обосновать для случая n = 2.	
	16. □Общее решение ЛОДУ n-го порядка с	
	постоянными коэффициентами в случае одина-ковых	
	характеристических чисел. Обосновать для случая	
	n = 2.	
	17. □Отыскание частного решения ЛНДУ n-го	
	порядка с постоянными коэффициентами и правой	
	частью $f(x) = eax Pm(x)$.	
	18. □Отыскание частного решения ЛНДУ n-го	
	порядка с постоянными коэффициентами и правой	
11	частью f(x) = eax [Pm(x)cosbx+Qk(x)sinbx].	ОК-7, ОПК-3
11	тяды 1. □Понятие ряда. Дать определение сходящегося и	UN-7, UIIN-3
	расходящегося рядов, суммы ряда. Привести	
	примеры.	
	2. □В чём состоит необходимый признак сходимости	
	ряда? Обосновать его и привести пример,	
	показывающий, что он не является достаточным.	

№ пп	Вопрос/Задача	Проверяемые компетенции
	3.□Интегральный признак сходимости. Сходимость ряда Дирихле.	
	4. □1-й признак сравнения знакоположительных рядов.	
	5. □2-й признак сравнения знакоположительных рядов.	
	6.□Признак сходимости Даламбера. 7.□Признак сходимости Коши.	
	8. □Признак сходимости Лейбница для знакочередующихся рядов.	
	9. □Что называется абсолютной и условной сходимостью знакочередующегося ряда? При-вести примеры.	
	10. □ Какой ряд называется степенным? 11. □ Теорема Абеля. Нахождение радиуса и интервала сходимости степенного ряда.	
	12. □Свойства степенных рядов. 13. □ В чём заключается задача разложения функции в степенной ряд?	
	14. □Что называется рядом Тейлора функции ? Как определяются коэффициенты ряда Тейлора?	
	15. □Необходимые и достаточные условия разложимости функции в ряд Тейлора. 16. □Разложения в ряд Маклорена функций , , ,	
	, , , . 17.□Приближенное вычисление значения функции с помощью степенных рядов. Привес-ти пример.	
	18. □ В чём состоит метод интегрирования функций с помощью степенных рядов? Привес-ти пример.	
	19. □ В чём состоит метод интегрирования дифференциальных уравнений с помощью сте-пенных рядов? Привести пример.	
12	Случайные события и их вероятности 1. □Что понимается под множеством элементарных исходов, связанного с данным опы-том? Приведите пример.	ОК-7, ОПК-3
	2. □Что называется случайным событием в опыте? Чем характеризуется невозможное и достоверное событие?	
	3. □Что такое сумма, произведение, разность двух событий? Какое событие называется противоположным событию А? Приведите примеры.	
	4. □Что называется относительной частотой события? Как определяется вероятность со-бытия статистически?	
	5.□Как определяется вероятность события в	

№ пп	Вопрос/Задача	Проверяемые компетенции
	опытах с конечным числом одинаково воз-можных исходов (классическое определение вероятности)? 6. □Как определяется вероятность события в опытах с непрерывным множеством исхо-дов (геометрическая вероятность)? Дайте геометрическое определение вероятности собы-	
	тия. 7. □Чему равна вероятность суммы 2-х событий в двух случаях: а) события несовместны; б) события совместны?	
	8. □Что называется условной вероятностью события А при выполнении события В? 9. □Чему равна вероятность произведения 2-х событий в двух случаях: а) события неза-висимы;	
	 б) события зависимы? 10. □В чём состоит формула полной вероятности? 11. □В чём состоит формула Байеса? 12. □Что понимается под схемой Бернулли 	
	независимых повторных испытаний? Запиши-те формулу Бернулли для вычисления величин Pn(k). 13. □Запишите локальную приближённую формулу Лапласа. В каком случае её применя-ют для вычисления Pn(k)?	
	14. □Запишите интегральную приближённую формулу Лапласа. В каком случае её приме-няют для вычисления Pn(k1 □ k □ k2)? 20. □Запишите приближённую формулу Пуассона. В	
	каком случае её применяют для вы-числения Pn(k)?	
13	Случайные величины 1. □Что называется случайной величиной? Привести примеры дискретных и непрерыв-ных величин. 2. □Что такое функция распределения F(x) случайной величины X? Какие свойства функции распределения Вы знаете? 3. □Как для дискретной случайной величины определяется ряд распределения и функция распределения? 4. □Когда распределение дискретной случайной величины называют: биномиальным законом распределения; распределением Пуассона;	ОК-7, ОПК-3
	геометрическим распределением; гипергеометрическим распределением? 5. □ Как определяется функции плотности f(x) непрерывной случайной величины X? Ка-кие её свойства Вы знаете? 6. □ Когда распределение непрерывной случайной	

№ пп	Вопрос/Задача	Проверяемые компетенции
	величины называют: равномерным распределением на отрезке [a, b]; показательным распределением	
	с параметром 🗆; нор-мальным законом	
	распределения с параметрами а и 🗆?	
	7.□В чём заключается «правило трёх сигм»?	
	8. □Что называется математическим ожиданием M(X)	
	случайной величины X в случаях: а) X 🗆	
	дискретная; б) X – непрерывная случайная величина?	
	9.□Что называется дисперсией D(X) и средним	
	квадратичным отклонением □(X) вели-чины X?	
	10. □ Какие основные свойства М(X) и D(X) Вы знаете?	
	11. □ Когда случайные величины X и Y называются независимыми?	
	12.□Что характеризует коэффициент корреляции?	
14	Элементы математической статистики	ОК-7, ОПК-3
	1. □Что означает выборочный метод обследования	
	генеральной совокупности?	
	2. □Что такое вариационный и статистический ряд?	
	3. □В каких случаях группируют выборочные	
	данные?	
	4. □Какие способы графического изображения	
	выборочных данных Вы знаете? Какую информацию о	
	генеральной совокупности несут эти изображения? 5. □Какие требования предъявляют к точечным	
	5. □ Какие требования предъявляют к точечным оценкам неизвестного параметра гене-ральной совокупности?	
	6. □Что является точечной оценкой для математического ожидания?	
	7. □Что является точечной оценкой для дисперсии?	
	8. □Что такое корреляционная таблица?	
	9. □Как определяется точечная оценка для	
	коэффициента корреляции двумерной гене-ральной величины (X,Y)?	
	10. □Что такое доверительный интервал,	
	доверительная вероятность, уровень значимо-сти?	
	11. □Как находится доверительный интервал для математического ожидания?	
	12. ☐ Как находится доверительный интервал для дисперсии?	
	13. □Что такое статистическая гипотеза? В чём заключается основная идея проверки статистической гипотезы?	
	14. □Как проверяется гипотеза о виде	
	распределения генеральной совокупности (крите-	

№ пп	Вопрос/Задача	Проверяемые компетенции
	рий согласия Пирсона)?	
	15. □Что называется регрессией Y на X и X на Y?	
	В чём их смысл?	
	16. □В чём состоит метод наименьших квадратов	
	(MHK)?	
	17. □Как получить уравнения линейной регрессии Y	
	на Х и Х на Y с помощью МНК?	
15	Экзаменационный билет 1 семестра (образец)	ОК-7, ОПК-3
	экзаменационным омист 1 семестра (образец)	ok 7, om 3
	1. Вычислить произведение матриц 2-го порядка и	
	её определитель.	
	2. Даны точки 3 точки А, В, С на плоскости с	
	координатами. Найти:	
	а) координаты и длину вектора АВ;	
	б) косинус угла В;	
	в) уравнение прямой, проходящей через точки А	
	и В.	
	3. Даны точки А1, А2, А3. Найти:	
	а) площадь треугольника А1А2А3;	
	б) уравнение плоскости, проходящей через точки	
	A1A2A3.	
	4. Вычислить предел функции, содержащей	
	известную неопредённость.	
	5. Исследовать функциюю, заданную кусочно-	
	аналитическим образои на непрерывность. Найти	
	точки разрыва, если они есть, определить их	
1.0	тип. Сделать схематический рисунок.	01/ 7 05// 2
16	Зачётный билет 2 семестра (образец)	ОК-7, ОПК-3
	1. Вычислить производные функций: а) простой	
	функции, б) сложной функции.	
	2. Найти наименьшее m и наибольшее M значения	
	функции F(x) на отрезке [a, b]. 3. Вычислить частные производные 1-го порядка,	
	= 5. вычислить частные производные 1-10 порядка, $= 6.00$ если $z = 6.00$ г.	
	4. Вычислить два неопределённых интеграла,	
	ч. общислить два неопределенных интеграла, используя методы.	
	5. Найти площадь плоской фигуры D, ограниченной	
	заданными линиями линиями.	
17	Экзаменационный билет 3 семестра (образец)	ОК-7, ОПК-3
	1. В ящике имеется 6 новых и 4 подержанных	-
	мячей.	
	а) Наугад взяли один мяч. Найти вероятность	
	того, что он новый.	
	б) Наугад взяли два мяча. Найти вероятность	
	того, что среди них один новый.	
	2. На карточках написаны цифры 2, 5, 7, 9.	
	Какова вероятность того, что наугад	
	составленное при помощи этих карточек	
	четырёхзначное число будет нечётным числом?	
	3. Один студент может сдать экзамен по	

	оверяемые эмпетенции
математике на «отлично» с вероятностью 0,4, а второй - с вероятностью 0,3. Найти вероятность того, что: а) оба студента получат оценку «отлично»; б) только один из них получит «отлично». 4. Завод выпускает определённого вида изделия. Каждое изделие имеет дефект с ве-роятностью 0,04. Найти вероятность того, что среди пяти наугад взятых изделий будет ровно три с дефектом. 5. Из букв разрезной азбуки, составляющих слово «мыло», наугад берутся 2 буквы. Случайная величина X - число взятых гласных букв. Найти ряд распределения, математическое ожидание М(X) и дисперсию D(X). 6. Выборочные данные представлены группированным статистическим рядом: а) Найти выборочное среднее. б) Найти исправленную выборочную дисперсию \$2. в) Построить гистограмму относительных частот. 18 З семестр Расчётное задание по математической СК-7, статистике Пусть двумерная случайная величина (X, Y) - генеральная совокупность, где X - вес (в килограммах), а Y - рост (в сантиметрах) случайно взятого человека. В качестве исходных данных предлагается выборка объёмом п = 50 из генеральной совокупности (X, Y): Для обработки этих данных в типовом расчёте требуется выполнить следующую работу. 1. Для величин X и Y составить сгруппированные ряды. На основании этих рядов построить полигоны, гистограммы относительных частот для X и Y. 2. Вычислить точечные оценки: выборочные средние и ; несмещённые выборочные средние квадратичные отклонения sx и sy. 3. Составить корреляционную таблицу. Вычислить выборочный коэффициент корреляции гв.	омпетенции

4. Файл и/или БТЗ с полным комплектом оценочных материалов прилагается.